Describing Shapes of Quantitative Variables with Histograms

David Gerard
2017-09-18

Learning Objectives

- Distributions
- Describe center/shape/spread of quantitive variables.
- Understand and use histograms.
- Section 1.6.3 of DBC.

A new dataset

A data frame with 1000 observations on the following 6 variables.

- sex Gender of the student.
- SATV Verbal SAT percentile.
- SATM Math SAT percentile.
- SATSum Total of verbal and math SAT percentiles.
- HSGPA High school grade point average.
- FYGPA First year (college) grade point average.

satGPA

```
library(tidyverse)
data(satGPA, package = "openintro")
glimpse(satGPA)
```

Observations: 1,000
Variables: 6
\$ sex <int> 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2...
\$ SATV <int> $65,58,56,42,55,55,57,53,67,41, \ldots$
\$ SATM <int> 62, 64, 60, 53, 52, 56, 65, 62, 77, 44, ...
\$ SATSum <int> 127, 122, 116, 95, 107, 111, 122, 115, 1...
\$ HSGPA <dbl> 3.40, 4.00, 3.75, 3.75, 4.00, 4.00, 2.80...
\$ FYGPA <dbl> 3.18, 3.33, 3.25, 2.42, 2.63, 2.91, 2.83...

email

These data represent incoming emails for the first three months of 2012 for an email account.

Some variables:

- spam Indicator for whether the email was spam.
- to_multiple Indicator for whether the email was addressed to more than one recipient.
- viagra The number of times "viagra" appeared in the email.
- num_car The number of characters in the email, in thousands.

email

data("email", package = "openintro")
glimpse(select(email, spam, to_multiple, viagra, num_char))

Observations: 3,921
Variables: 4
\$ spam <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
\$ to_multiple <dbl> 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,...
$\$$ viagra <dbl> $0,0,0,0,0,0,0,0,0,0,0,0, \ldots$
\$ num_char <dbl> 11.370, 10.504, 7.773, 13.256, 1.23...

Distribution

- How do we describe variables?
- How do we summarize their characteristics?
- What we are interested in is a variable's distribution.

distribution

The distribution of a variable tells us what values it takes and how often it takes these values.

There are two main ways we describe the distribution of a variable: graphically or numerically.

This lecture, we introduce one graphical way to describe the distribution of quantitative variables.

Histogram

histogram

Histograms plot the frequencies (counts), percents, or proportions of equal-width classes of values.
E.g.
$\mathrm{x}<-\mathrm{c}(1,1.2,2,3,3.5,3.9)$

Bin the observations into one of three groups:

- group1 $=x: x \leq 2$
- group2 $=x: 2<x \leq 3$
- group3 $=x: 3<x \leq 4$

Then make a plot with bars where the height of each bar is proportional to the counts within each group.

histogram continued

```
hist(x, main = "histogram of x")
```

histogram of x

histogram using ggplot2

```
qplot(x, geom = "histogram", main = "histogram of x",
    breaks = c(1, 2, 3, 4))
```

histogram of x

Describing Distributions

- Histograms help us describe the shape of a distribution.
- Symmetric vs skewed left vs skewed right.
- Unimodal, biomodal, multimodal.

Symmetric — SAT scores

```
hist(satGPA$SATV, xlab="SAT Verbal", breaks = 15)
```

Histogram of satGPA\$SATV

Skewed Right: Email Length

```
data("email", package = "openintro")
hist(email$num_char)
```

Histogram of email\$num_char

Skewed Left: Trump's Tweet Length

Histogram of trump\$length

On Skew and Symmetry

- Many physical measurements follow symmetric distributions: e.g. height or weight.
- Many variables are specifically designed to follow symmetric distributions: IQ test scores, SAT scores.
- Variables with boundaries tend to be skewed: e.g. income cannot be below zero so tends to be skewed right. Tweets have a max length of 140 characters, so tends to be skewed left.

Mode

Mode

A mode is a prominent peak in a distribution. A distribution with one mode is unimodal. A distribution with two modes is bimodal. A distribution with more than one mode is multimodal.

- Multimodality often occurs when (and is usually interesting because) there are subgroups within the sample.

Unimodal

Histogram of x

Unimodal

Bimodal

Histogram of x

Multimodal

Histogram of \mathbf{x}

bin width

- Bin width can drastically change how you see the shape of the distribution.
- Always make multiple plots with multiple bin widths to get different views of a distribution.

A new dataset

Observational units: Movies that sold tickets in 2015.
Variables:

- rt Rotten tomatoes score normalized to a 5 point scale.
- meta Metacritic score normalized to a 5 point scale.
- imdb IMDB score normalized to a 5 point scale.
- fan Fandango score.

Movie Scores

```
library(tidyverse)
read_csv("../../data/movie.csv") %>%
    select(FILM, RT_norm, Metacritic_norm,
        IMDB_norm, Fandango_Stars) %>%
    transmute(film = FILM, rt = RT_norm, meta = Metacritic_norm,
        imdb = IMDB_norm, fan = Fandango_Stars) ->
    movie
head(movie)
```

\# A tibble: 6 x 5

film	rt	meta imdb		
<chr>	<dbl>	<dbl>	<dbl>	<dbl>

1 Avengers: Age of Ultron (2015) $3.70 \quad 3.30 \quad 3.90 \quad 5.0$
2
3
4 Do You Believe? (2015) 0.90 1.10 $2.70 \quad 5.0$
5 Hot Tub Time Machine 2 (2015) 0.70 1.45 $2.55 \quad 3.5$
$6 \quad$ The Water Diviner (2015) $3.15 \quad 2.50$

Metacritic Score: Mostly Symmetric?

```
hist(movie$meta, breaks = 10)
```

Histogram of movie\$meta

Metacritic Score: Maybe some Modality?

hist(movie\$meta, breaks = 20)

Histogram of movie\$meta

Outliers

outliers

Outliers are observations that lie outside the overall pattern of a distribution. Always look for outliers and try to explain them.

Histogram of x

