Numerical Summaries of center and spread of quantitative variables

David Gerard
2017-09-18

Learning Objectives

- Mean/median.
- Standard deviation/median absolute deviation.
- Sections 1.6.2, 1.6.4, in DBC.

Numerical Summaries

- Sometimes it is inconvenient to provide a graphical summary of your data.
- An alternative is to provide numerical summaries of data.
- Summarizing the data numerically can also provide insights into distributions.

Measures of Center

Where is the distribution's "center"?

```
library(tidyverse)
data(satGPA, package = "openintro")
hist(satGPA$SATV, breaks = 15, xlab = "SATV")
```

Histogram of satGPA\$SATV

The mean

One measure of center is the mean.

mean

To find the mean (or average) \bar{x} of a set of observations, add their values and divide by the number of observations. If the n observations are $x_{1}, x_{2}, \ldots, x_{n}$, their mean is

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Mean makes sense here

```
xbar <- mean(satGPA$SATV)
hist(satGPA$SATV, breaks = 15, xlab = "SATV")
abline(v = xbar, col = "red")
```

Histogram of satGPA\$SATV

But what about here?

```
trump <- read.csv("../../data/trump.csv")
xbar <- mean(trump$length)
hist(trump$length, breaks = 30, xlab = "length")
abline(v = xbar, col = "red")
```

Histogram of trump\$length

Why does this happen?

- The skew is pulling the mean to the right.
- This is because the mean can be interpreted as the "center of mass" of the distribution.
- The mean is not a "typical" value of of the length of a tweet.

The mean is not robust to extreme observations.

```
mean(c(1, 2, 2, 3, 3))
[1] 2.2
mean(c(1, 2, 2, 3, 10))
[1] }3.
mean(c(1, 2, 2, 3, 20))
[1] }5.
mean(c(1, 2, 2, 3, 100))
[1] 21.6
```


Another measure of center: The Median

Median

The median is the midpoint of a distribution. Half of the observations are smaller than the median and the other half are larger than the median. Here is the rule for finding the median:

1. Arrange all of the observations in order of size, from smallest to largest.
2. If the number of observations n is odd, the median M is the center observation in the ordered list. Find the location of the median by counting $(n+1) / 2$ observations up from the bottom of the list.
3. If the number of observations n is even, the median M is the mean of the two center observations in the ordered list.

Trump's Tweets

```
M <- median(trump$length)
hist(trump$length, breaks = 30, xlab = "length")
abline(v = xbar, col = "red")
abline(v = M, col = "blue")
```

Histogram of trump\$length

The median is robust to extreme observations.

```
median(c(1, 2, 2, 3, 3))
[1] 2
median(c(1, 2, 2, 3, 10))
[1] 2
median(c(1, 2, 2, 3, 20))
[1] 2
median(c(1, 2, 2, 3, 100))
[1] 2

\section*{Exercise}

Find the mean and median of the following numbers:
\(6,3,2,3,3,7\)

\section*{Are centers enough to describe a distribution?}
https://youtu.be/4B2x0vKFFz4

\section*{Measures of Spread}

\section*{Deviations}
- A measure of center is nice, but how do we describe variability of the points from the center?
- Idea: Use the deviations from a measure of center \(\left(x_{i}-w\right)\).
- Can we use the average of the deviations from the mean \((w=\bar{x})\) ?

\section*{First proof}
- prove: \(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0\) for any sample.
- A proof is a "paragraph" of mathematical "sentences"
- Write "sentences" in order to make logical sense to the reader,
- Your proof is your personal argument as to why a claim must be true.
- Requirement (for completeness and clarity for the reader): Justify each step ("sentence") requiring statistics knowledge. Tell the reader what statistical concept you are using. ...like requiring you cite prior work you rely on in your writing
- Make liberal use of results already proven in the course. Just tell the reader what result you are using.

\section*{First proof: with a little too much detail}
- prove: \(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0\) for any sample.

\section*{Proof.}
\[
\sum\left(x_{i}-\bar{x}\right)=\sum x_{i}-\sum \bar{x} \text { (associative property) }
\]

\section*{First proof: with a little too much detail}
- prove: \(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0\) for any sample.

\section*{Proof.}
\[
\begin{aligned}
\sum\left(x_{i}-\bar{x}\right) & =\sum x_{i}-\sum \bar{x}(\text { associative property }) \\
& =\sum x_{i}-n \bar{x}(\text { summing up } n \text { identical things })
\end{aligned}
\]

\section*{First proof: with a little too much detail}
- prove: \(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0\) for any sample.

\section*{Proof.}
\[
\begin{aligned}
\sum\left(x_{i}-\bar{x}\right) & =\sum x_{i}-\sum \bar{x}(\text { associative property }) \\
& =\sum x_{i}-n \bar{x}(\text { summing up } n \text { identical things }) \\
& =\sum x_{i}-n \frac{1}{n} \sum x_{i}(\text { definition of } \bar{x})
\end{aligned}
\]

\section*{First proof: with a little too much detail}
- prove: \(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0\) for any sample.

\section*{Proof.}
\[
\begin{aligned}
\sum\left(x_{i}-\bar{x}\right) & =\sum x_{i}-\sum \bar{x}(\text { associative property }) \\
& =\sum x_{i}-n \bar{x}(\text { summing up } n \text { identical things }) \\
& =\sum x_{i}-n \frac{1}{n} \sum x_{i}(\text { definition of } \bar{x}) \\
& =\sum x_{i}-\sum x_{i}(n \text { 's cancel })
\end{aligned}
\]

\section*{First proof: with a little too much detail}
- prove: \(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0\) for any sample.

\section*{Proof.}
\[
\begin{aligned}
\sum\left(x_{i}-\bar{x}\right) & =\sum x_{i}-\sum \bar{x}(\text { associative property }) \\
& =\sum x_{i}-n \bar{x}(\text { summing up } n \text { identical things }) \\
& =\sum x_{i}-n \frac{1}{n} \sum x_{i}(\text { definition of } \bar{x}) \\
& =\sum x_{i}-\sum x_{i}(n \text { 's cancel }) \\
& =0
\end{aligned}
\]

\section*{Squared deviations}
- Cool! We just made our first proof.
- But this means that the average deviation is not a good measure of spread:
\[
\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)=0 \text { for any sample! }
\]
- What about the average of the squared deviations?

\section*{What about the average of the squared deviations?}

\section*{variance}

The variance \(s^{2}\) of a set of observations is the average of the squares of the deviations of the observations from their mean. In symbols, the variance of \(n\) observations \(x_{1}, x_{2}, \ldots, x_{n}\) is
\(s^{2}=\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots\left(x_{n}-\bar{x}\right)^{2}}{n-1}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\).
The standard deviation \(s\) is the square root of the variance \(s^{2}\) :
\[
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\]

\section*{What about the average of the absolute deviations?}

\section*{MAD}

The median absolute deviation, or MAD, of a set of observations is the average of the absolute value of the deviations of the observations from their median. In symbols, the MAD of \(n\) observations \(x_{1}, x_{2}, \ldots, x_{n}\) is
\[
M A D=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-M\right|
\]
where \(M\) is the median of \(x_{1}, \ldots, x_{n}\).

\section*{What is so special about the median?}

Let
\[
S A D(w)=\sum_{i=1}^{n}\left|x_{i}-w\right|
\]

Consider the data \(x_{1}=9, x_{2}=3, x_{3}=15, x_{4}=1\)
What does the \(S A D(w)\) function look like for these data?

SAD <- function(w) \{ sum ( abs(x-w) ) \}

\section*{What is so special about the median? \\ if}


Where is the function \(S A D(w)\) smallest (minimized)?

\section*{Trump's Twitter}

OK back to looking at the data: Twitter length data from trump. What does the \(S A D(w)\) function look like for these data?


Where is the function \(S A D(w)\) smallest (minimized)?

\section*{What's so special about the average?}

Let \(\operatorname{SSD}(w)=\sum\left(x_{i}-w\right)^{2}\).
Consider again the data \(x_{1}=9, x_{2}=3, x_{3}=15, x_{4}=1\) What is the \(S S D(w)\) function for these data?
\[
\sum_{i=1}^{4}\left(x_{i}-w\right)^{2}
\]

\section*{What's so special about the average?}

Let \(\operatorname{SSD}(w)=\sum\left(x_{i}-w\right)^{2}\).
Consider again the data \(x_{1}=9, x_{2}=3, x_{3}=15, x_{4}=1\) What is the \(S S D(w)\) function for these data?
\[
\sum_{i=1}^{4}\left(x_{i}-w\right)^{2}=(9-w)^{2}+(3-w)^{2}+(15-w)^{2}+(1-w)^{2}
\]

\section*{What's so special about the average?}

Let \(\operatorname{SSD}(w)=\sum\left(x_{i}-w\right)^{2}\).
Consider again the data \(x_{1}=9, x_{2}=3, x_{3}=15, x_{4}=1\) What is the \(S S D(w)\) function for these data?
\[
\begin{aligned}
\sum_{i=1}^{4}\left(x_{i}-w\right)^{2}= & (9-w)^{2}+(3-w)^{2}+(15-w)^{2}+(1-w)^{2} \\
= & \left.\left(81-29 w+w^{2}\right)+9-23 w+w^{2}\right) \\
& +\left(225-215 w+w^{2}\right)+\left(1-21 w+w^{2}\right)
\end{aligned}
\]

\section*{What's so special about the average?}

Let \(\operatorname{SSD}(w)=\sum\left(x_{i}-w\right)^{2}\).
Consider again the data \(x_{1}=9, x_{2}=3, x_{3}=15, x_{4}=1\) What is the \(S S D(w)\) function for these data?
\[
\begin{aligned}
\sum_{i=1}^{4}\left(x_{i}-w\right)^{2}= & (9-w)^{2}+(3-w)^{2}+(15-w)^{2}+(1-w)^{2} \\
= & \left.\left(81-29 w+w^{2}\right)+9-23 w+w^{2}\right) \\
& +\left(225-215 w+w^{2}\right)+\left(1-21 w+w^{2}\right) \\
= & 4 w^{2}-56 w+316
\end{aligned}
\]

\section*{What's so special about the average?}

Let \(\operatorname{SSD}(w)=\sum\left(x_{i}-w\right)^{2}\).
Consider again the data \(x_{1}=9, x_{2}=3, x_{3}=15, x_{4}=1\) What is the \(S S D(w)\) function for these data?
\[
\begin{aligned}
\sum_{i=1}^{4}\left(x_{i}-w\right)^{2}= & (9-w)^{2}+(3-w)^{2}+(15-w)^{2}+(1-w)^{2} \\
= & \left.\left(81-29 w+w^{2}\right)+9-23 w+w^{2}\right) \\
& +\left(225-215 w+w^{2}\right)+\left(1-21 w+w^{2}\right) \\
= & 4 w^{2}-56 w+316
\end{aligned}
\]

So, as ugly as \(\sum_{i=1}^{n}\left(x_{i}-w\right)^{2}\) originally looks it's just a smooth quadratic function (convex).

\section*{What does the \(S S D(w)\) function look like?}


In this case \(S S D(w)=4 w^{2}-56 w+316\)

\section*{What value of \(w\) minimizes \(S S D(w)\) ?}

What value \(w\) minimizes \(S S D(w)=4 w^{2}-56 w+316\) ?
\[
\begin{aligned}
\frac{d}{d w} S S D(w) & =\frac{d}{d w}\left[4 w^{2}-56 w+316\right] \\
& =2(4) w-56+0=8 w-56
\end{aligned}
\]

Set the derivative \(=0\) and solve for \(w\).
\[
8 w-56=0 \quad \Longrightarrow \quad w=\frac{56}{8}=7
\]
mean ( x )
[1] 7

Check second derivative condition, etc...

\section*{General Data}

What value of \(w\) minimizes \(S S D(w)\) for any \(x_{1}, x_{2}, \ldots, x_{n}\) ?
Minimize
\[
f(w)=S S D(w)=\sum\left(x_{i}-w\right)^{2}
\]

So

Second derivative \(=2 n>0\), so \(\min\) (convex so global \(\min\) ).

\section*{General Data}

What value of \(w\) minimizes \(S S D(w)\) for any \(x_{1}, x_{2}, \ldots, x_{n}\) ?
Minimize
\[
\begin{aligned}
f(w) & =S S D(w)=\sum\left(x_{i}-w\right)^{2} \\
& =\sum\left(x_{i}^{2}-2 w x_{i}+w^{2}\right)
\end{aligned}
\]

So

Second derivative \(=2 n>0\), so \(\min\) (convex so global min).

\section*{General Data}

What value of \(w\) minimizes \(S S D(w)\) for any \(x_{1}, x_{2}, \ldots, x_{n}\) ?
Minimize
\[
\begin{aligned}
f(w) & =S S D(w)=\sum\left(x_{i}-w\right)^{2} \\
& =\sum\left(x_{i}^{2}-2 w x_{i}+w^{2}\right) \\
& =\sum x_{i}^{2}-2 w \sum x_{i}+\sum w^{2}
\end{aligned}
\]

So

Second derivative \(=2 n>0\), so \(\min\) (convex so global min).

\section*{General Data}

What value of \(w\) minimizes \(S S D(w)\) for any \(x_{1}, x_{2}, \ldots, x_{n}\) ?
Minimize
\[
\begin{aligned}
f(w) & =S S D(w)=\sum\left(x_{i}-w\right)^{2} \\
& =\sum\left(x_{i}^{2}-2 w x_{i}+w^{2}\right) \\
& =\sum x_{i}^{2}-2 w \sum x_{i}+\sum w^{2} \\
& =\sum x_{i}^{2}-2 w \sum x_{i}+n w^{2}
\end{aligned}
\]

So

Second derivative \(=2 n>0\), so \(\min\) (convex so global \(\min\) ).

\section*{General Data}

What value of \(w\) minimizes \(S S D(w)\) for any \(x_{1}, x_{2}, \ldots, x_{n}\) ?
Minimize
\[
\begin{aligned}
f(w) & =S S D(w)=\sum\left(x_{i}-w\right)^{2} \\
& =\sum\left(x_{i}^{2}-2 w x_{i}+w^{2}\right) \\
& =\sum x_{i}^{2}-2 w \sum x_{i}+\sum w^{2} \\
& =\sum x_{i}^{2}-2 w \sum x_{i}+n w^{2}
\end{aligned}
\]

So
\[
\frac{d}{d w} f(w)=-2 \sum x_{i}+2 n w \stackrel{\text { set }}{=} 0 \Rightarrow w=\frac{1}{n} \sum x_{i}=\bar{x}
\]

Second derivative \(=2 n>0\), so \(\min\) (convex so global min).

\section*{The point}
- The mean minimizes the sum (and mean) of squared deviations.
- So the variance (and standard deviation) makes sense as a measure of spread from the mean.
- There are other (better) reasons to use the standard deviation as a measure of spread from the mean (more on this later).
- The median minimizes the sum (and mean) of absolute deviations.
- So the MAD makes sense as a measure of spread from the median.
- Caution: R's mad() function isn't quite the mean of absolute deviations. Multiplies this by a constant for theoretical reasons.

The standard deviation is not robust to extreme observations.
```

sd(c(1, 2, 2, 3, 3))
[1] 0.8367
sd(c(1, 2, 2, 3, 10))
[1] 3.647
sd(c(1, 2, 2, 3, 20))
[1] 8.081
sd(c(1, 2, 2, 3, 100))

```
[1] 43.83

The MAD is robust to extreme observations.
```

mad(c(1, 2, 2, 3, 3))
[1] 1.483
mad(c(1, 2, 2, 3, 10))
[1] 1.483
mad(c(1, 2, 2, 3, 20))
[1] 1.483
mad(c(1, 2, 2, 3, 100))
[1] 1.483

```

\section*{When to use each?}
- Use the standard deviation for reasonably symmetric distributions without any extreme observations.
- Use the MAD as a robust version of SD (also for symmetric distributions), can accomodate a couple extreme observations.

Linear transformations

\section*{Linear Transformations}
- Sometimes, we want to analyze data in different units.
- Temperature: Celsius \(=\frac{5}{9}(\) Fahrenheit -32\()\)
- Curve: exam \(=\) score \(+(0.25)(100-\) score \()\) (This curve adds back \(25 \%\) of exam points missed).
- Standardized Score: \(z_{i}=\frac{x_{i}-\bar{x}}{s}\).
- Claim All three are examples of linear transformations:
\[
y=a+b x
\]

\section*{Relationships (without proof)}
- Let \(y_{i}=a+b x_{i}\) for \(i=1,2, \ldots, n\).
- Claim: \(\bar{y}=a+b \bar{x}\).
- Claim: median \(\left(y_{1}, \ldots, y_{n}\right)=a+b \operatorname{median}\left(x_{1}, \ldots, x_{n}\right)\)
- Claim: \(\operatorname{SD}(y)=|b| \operatorname{SD}(x)\)
- Claim: \(\operatorname{MAD}(y)=|b| \operatorname{MAD}(x)\)

\section*{Proof of first claim (with too much detail)}
\[
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}(\text { definition of } \bar{y})
\]

\section*{Proof of first claim (with too much detail)}
\[
\begin{aligned}
\bar{y} & =\frac{1}{n} \sum_{i=1}^{n} y_{i}(\text { definition of } \bar{y}) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(a+b x_{i}\right)\left(\text { definition of } y_{i}\right)
\end{aligned}
\]

\section*{Proof of first claim (with too much detail)}
\[
\begin{aligned}
\bar{y} & =\frac{1}{n} \sum_{i=1}^{n} y_{i}(\text { definition of } \bar{y}) \\
& \left.=\frac{1}{n} \sum_{i=1}^{n}\left(a+b x_{i}\right) \text { (definition of } y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} a+b \frac{1}{n} \sum_{i=1}^{n} x_{i} \text { (associative property) }
\end{aligned}
\]

\section*{Proof of first claim (with too much detail)}
\[
\begin{aligned}
\bar{y} & =\frac{1}{n} \sum_{i=1}^{n} y_{i}(\text { definition of } \bar{y}) \\
& \left.=\frac{1}{n} \sum_{i=1}^{n}\left(a+b x_{i}\right) \text { (definition of } y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} a+b \frac{1}{n} \sum_{i=1}^{n} x_{i} \text { (associative property) } \\
& \left.=\frac{1}{n} \sum_{i=1}^{n} a+b \bar{x} \text { (definition of } \bar{x}\right)
\end{aligned}
\]

\section*{Proof of first claim (with too much detail)}
\[
\begin{aligned}
\bar{y} & =\frac{1}{n} \sum_{i=1}^{n} y_{i}(\text { definition of } \bar{y}) \\
& \left.=\frac{1}{n} \sum_{i=1}^{n}\left(a+b x_{i}\right) \text { (definition of } y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} a+b \frac{1}{n} \sum_{i=1}^{n} x_{i} \text { (associative property) } \\
& \left.=\frac{1}{n} \sum_{i=1}^{n} a+b \bar{x} \text { (definition of } \bar{x}\right) \\
& =\frac{1}{n} n a+b \bar{x}(n \text { summations of } a)
\end{aligned}
\]

\section*{Proof of first claim (with too much detail)}
\[
\begin{aligned}
\bar{y} & =\frac{1}{n} \sum_{i=1}^{n} y_{i}(\text { definition of } \bar{y}) \\
& \left.=\frac{1}{n} \sum_{i=1}^{n}\left(a+b x_{i}\right) \text { (definition of } y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} a+b \frac{1}{n} \sum_{i=1}^{n} x_{i} \text { (associative property) } \\
& =\frac{1}{n} \sum_{i=1}^{n} a+b \bar{x}(\text { definition of } \bar{x}) \\
& =\frac{1}{n} n a+b \bar{x}(n \text { summations of } a) \\
& =a+b \bar{x}(n ' s \text { cancel) }
\end{aligned}
\]```

