More Numerical and Graphical Summaries using Percentiles

David Gerard
2017-09-18

Learning Objectives

- Percentiles
- Five Number Summary
- Boxplots to compare distributions.
- Sections 1.6.5 and 1.6.6 in DBC.

Trump's Tweet Length

- Mean $=102.7281$, median $=114.5$
- Standard deviation $=37.4711, \mathrm{MAD}=36.3237$

Are these sufficient summaries?

- Tells us nothing about the left skew.
- Doesn't tell us that a fourth of all tweets are greater than 138 characters.
- Doesn't tell us that small tweets are quite rare.

Percentiles

percentile

The p th percentile of a distribution is the value that has p percent of the observations fall at or below it. To calculate the percentile, arrange the observations in increasing order and count up the required percent from the bottom of the list.

Why do we care?

- If we know a few percentiles, that gives us an idea of the shape of a distribution.
- Knowing the same percentiles of two distributions makes it easy to quickly compare them.
- It's usual to return the 0th (= minimum), 25th, 50th (= median), 75th, and 100th ($=$ maximum) percentiles.

Quartiles

- The 25th and 75th percentiles have special names:

Quartiles

The first quartile Q_{1} is the 25 th percentile. It is the median of the lower half of the data.

The third quartile Q_{3} is the 75 th percentile. It is the median of the upper half of the data.

Example: Trump's Tweet Length

These ARE NOT the qaurtiles of Trump's tweet length

Histogram of trump\$length

Example: Trump's Tweet Length

These ARE NOT the qaurtiles of Trump's tweet length

Histogram of trump\$length

Example: Trump's Tweet Length

These ARE the qaurtiles of Trump's tweet length

Histogram of trump\$length

Example: Trump's Tweet Length

These ARE the qaurtiles of Trump's tweet length

Histogram of trump\$length

Boxplot

- It's very useful to plot these quantiles in what is called a boxplot.

boxplot

A boxplot is a graph of the five number summary. A central box spans the quartiles Q_{1} and Q_{3}. A line in the box marks the median M. Lines (the "whiskers") extend from the box out to the smallest and largest observations.

Trump's Tweets

boxplot (trump\$length, range $=0$)

Boxplots tell us about skew: trump

Boxplots tell us about skew: email

Boxplots tell us about skew: satGPA

Most boxplots you see will actually have more in them

```
boxplot(email$num_char)
```


To answer that, we first need to introduce the interquartile range (IQR).

IQR

The interquartile range IQR is the distance between the first and third quartiles,

$$
I Q R=Q_{3}-Q_{1},
$$

and is a measure of spread.

Like MAD, IQR is a robust measure of spread

```
IQR(c(1, 2, 2, 3, 3))
[1] 1
IQR(c(1, 2, 2, 3, 10))
[1] 1
IQR(c(1, 2, 2, 3, 20))
[1] 1
IQR(c(1, 2, 2, 3, 100))
[1] 1
```


$1.5 \times I Q R$ Rule

Abstract

$1.5 \times I Q R$ Rule People will often call an observation a suspected outlier if it falls more than $1.5 \times I Q R$ above the third quartile or below the first quartile.

- In most boxplots, the upper whisker extends to the largest observation within $1.5 \times I Q R$ of Q_{3}.
- In most boxplots, the lower whisker extends to the smallest observation within $1.5 \times I Q R$ of Q_{1}.
- Points outside of $[Q 1-1.5 \times I Q R, Q 3+1.5 \times I Q R]$ are labelled "suspsected outliers" and are plotted individually.

Sometimes, be suspicious of this rule

5.25 percent of all emails are "outliers"?

Recall Movie Scores Dataset

Observational units: Movies that sold tickets in 2015.
Variables:

- rt Rotten tomatoes score normalized to a 5 point scale.
- meta Metacritic score normalized to a 5 point scale.
- imdb IMDB score normalized to a 5 point scale.
- fan Fandango score.

Recall Movie Scores Dataset

```
read_csv("../../data/movie.csv") %>%
    select(FILM, RT_norm, Metacritic_norm,
        IMDB_norm, Fandango_Stars) %>%
    transmute(film = FILM, rt = RT_norm, meta = Metacritic_norm,
    imdb = IMDB_norm, fan = Fandango_Stars) ->
    movie
head(movie)
```

\# A tibble: 6 x 5

| | film
 <chr> | <dbl> | meta imdb | fan |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | <dbl> | <dbl> | | |

How to compare these distributions?

Side-by-side boxplots!
boxplot(movie[, 2:5])

Another Option: stacked histograms

```
old_parameters <- par(mfrow = c(4, 1))
hist(movie$rt, xlim = c(0, 5))
hist(movie$meta, xlim = c(0, 5))
hist(movie$imdb, xlim = c(0, 5))
hist(movie$fan, xlim = c(0, 5))
par(old_parameters)
```

IMPORTANT: Same x-limits for all plots when stacking vertically.

Another Option: stacked histograms

