Describing Categorical Variables

David Gerard
2017-09-18

Learning Objectives

- Two-way tables.
- Conditional distributions.
- Bar Charts (and pie-charts)
- Section 1.7 of DBC

Recall: email dataset

These data represent incoming emails for the first three months of 2012 for an email account.

Some variables:

- spam Indicator for whether the email was spam.
- to_multiple Indicator for whether the email was addressed to more than one recipient.
- viagra The number of times "viagra" appeared in the email.
- num_car The number of characters in the email, in thousands.
- number Factor variable saying whether there was no number, a small number (under 1 million), or a big number.

Recall: Email dataset

library (tidyverse)
data("email", package = "openintro")
head(select(email, spam, to_multiple,
viagra, num_char, number))
spam to_multiple viagra num_char number

1	0	0	0	11.370	big
2	0	0	0	10.504	small
3	0	0	0	7.773	small
4	0	0	0	13.256	small
5	0	0	0	1.231	none
6	0	0	0	1.091	none

Distribution of categorical variable

- Recall: The distribution of a variable tells us what values it takes and how often it takes these values
- In terms of categorical variables, the distribution is just the counts of cases/proportions/percents in each category.
- A table of counts for a single variable is a frequency table.
table(email\$number)

```
none small big
    549 2827 545
```


The relative frequency table

- A table of proportions/percentages for a single variable is a relative frequency table.

```
prop.table(table(email$number))
```

```
    none small big
0.140 0.721 0.139
```


Barchart

barplot(table(email\$number)) \#\# need table

Barchart of proportions

barplot(prop.table(table(email\$number))) \#\# need table

Piecharts

pie(table(email\$number))

Never use picharts

- Humans find it easier to distinguish height rather than distinguish area.
- Which category has more emails: "big" or "none".
- In which plot is it easier to see which category has more emails?

Never use 3D graphics to plot 2D data

They tend to distort/obscure the view of the data and are distracting.
count

Joint distribution

- What about the joint distribution of two categorical variables?
- The distribution of a variable tells us what values it takes and how often it takes these values.
- The joint distribution is just the counts of cases/proportions/percents in each possible combination of categories.
- A table of these counts is a contingency table, also called a two-way table.

First Contingency Table

```
tabdat <- table(email$spam, email$number)
rownames(tabdat) <- c("Not Spam", "Spam")
tabdat
```

	none	small	big
Not Spam	400	2659	495
Spam	149	168	50

Often shown the row/column totals (or "margins")

	none	small	big	total
Not Spam	400	2659	495	3554
Spam	149	168	50	367
total	549	2827	545	3921

- What does 2659 represent?
- What does 495 represent?
- What does 3554 represent?
- What does 2827 represent?
- What does 3921 represent?

Joint Distribution

More informative: joint distribution in proportions:
prop.table(tabdat)

	none	small	big
Not Spam	0.10201	0.67814	0.12624
Spam	0.03800	0.04285	0.01275

- What does 0.6781 represent?
- What does 0.1262 represent?

Row Proportions

row proportions

The row proportions are computed as the counts divided by the row totals.
prop.table(tabdat, margin = 1)

	none	small	big
Not Spam	0.1125	0.7482	0.1393
Spam	0.4060	0.4578	0.1362

- What does 0.7482 represent?
- What does 0.1393 represent?

Column Proportions

column proportions

The column proportions are computed as the counts divided by the column totals.
prop.table(tabdat, margin = 2)

	none	small	big
Not Spam	0.72860	0.94057	0.90826
Spam	0.27140	0.05943	0.09174

- What does 0.9406 represent?
- What does 0.9083 represent?

Why do we care?

- Row/column proportions help us determine if two categorical variables are associated.
- E.g. Is the distribution of spam conditioned on seeing no numbers different from the distribution of spam conditioned on seeing small numbers? If so, then number and spam are associated.
- Would these be row or column proportions?
- Can also look for associations by checking the distribution of number conditioned on an email being spam and the distribution of number contioned on an email not being spam.
- Would these be row or column proportions?

Notice the word "conditioned"

```
prop.table(tabdat, margin = 2)
none small big
Not Spam 0.72860 0.94057 0.90826
Spam 0.27140 0.05943 0.09174
```

- The row/column proportions represent conditional distributions.
- Each column is the distribution of spam conditioned on either no big number (column 1), a small number (column 2), or a big number (column 3).

Notice the word "conditioned"

```
prop.table(tabdat, margin = 1)
\begin{tabular}{lrrr} 
& none & small & big \\
Not Spam & 0.1125 & 0.7482 & 0.1393 \\
Spam & 0.4060 & 0.4578 & 0.1362
\end{tabular}
```

- The row/column proportions represent conditional distributions.
- Each row is the distribution of number conditioned on either an email being not spam (first row) or spam (second row).

Visualizing row proportions: segmented barplot

```
barplot(table(email$spam, email$number),
xlab = "number", ylab = "spam")
```


What does the bottom left box represent?

Visualizing row proportions: standardized segmented barplot

barplot (prop.table(table(email\$spam, email\$number),

$$
\begin{gathered}
\text { margin }=2), \\
\text { xlab }=\text { "number", ylab }=\text { "spam") }
\end{gathered}
$$

What does the bottom left box represent?

Visualizing row proportions: segmented barplot

barplot(table(email\$number, email\$spam),
xlab = "spam", ylab = "number")

What does the bottom left box represent?

Visualizing row proportions: standardized segmented barplot

barplot(prop.table(table(email\$number, email\$spam),

$$
\begin{gathered}
\text { margin }=2) \\
\text { xlab }=\text { "spam", ylab }=\text { "number") }
\end{gathered}
$$

What does the bottom left box represent?

Visualizing row proportions: mosaic plot

plot(table(email\$spam, email\$number),
xlab = "spam", ylab = "number")
table(email\$spam, email\$number)

Width proportional to the counts in each spam category. What does the bottom left box represent?

Visualizing row proportions: mosaic plot

```
plot(table(email$number, email$spam),
    xlab = "number", ylab = "spam")
```

table(email\$number, email\$spam)

Width proportional to the counts in each number category. What does the bottom left box represent?

What's important in a mosaic plot?

- What in a mosaic plot are we looking for to see if two variables are associated?

