# **Describing Categorical Variables**

David Gerard 2017-09-18

- Two-way tables.
- Conditional distributions.
- Bar Charts (and pie-charts)
- Section 1.7 of DBC

These data represent incoming emails for the first three months of 2012 for an email account.

Some variables:

- spam Indicator for whether the email was spam.
- to\_multiple Indicator for whether the email was addressed to more than one recipient.
- viagra The number of times "viagra" appeared in the email.
- num\_car The number of characters in the email, in thousands.
- number Factor variable saying whether there was no number, a small number (under 1 million), or a big number.

|   | $\operatorname{spam}$ | to_multiple | viagra | num_char | number |
|---|-----------------------|-------------|--------|----------|--------|
| 1 | 0                     | 0           | 0      | 11.370   | big    |
| 2 | 0                     | 0           | 0      | 10.504   | small  |
| 3 | 0                     | 0           | 0      | 7.773    | small  |
| 4 | 0                     | 0           | 0      | 13.256   | small  |
| 5 | 0                     | 0           | 0      | 1.231    | none   |
| 6 | 0                     | 0           | 0      | 1.091    | none   |

#### Distribution of categorical variable

- Recall: The distribution of a variable tells us what values it takes and how often it takes these values
- In terms of categorical variables, the distribution is just the counts of cases/proportions/percents in each category.
- A table of counts for a single variable is a frequency table.

table(email\$number)

none small big 549 2827 545 • A table of proportions/percentages for a single variable is a relative frequency table.

prop.table(table(email\$number))

none small big 0.140 0.721 0.139 barplot(table(email\$number)) ## need table



#### **Barchart of proportions**

barplot(prop.table(table(email\$number))) ## need table



#### pie(table(email\$number))



- Humans find it easier to distinguish height rather than distinguish area.
- Which category has more emails: "big" or "none".
- In which plot is it easier to see which category has more emails?

#### Never use 3D graphics to plot 2D data

They tend to distort/obscure the view of the data and are distracting.



- What about the *joint* distribution of two categorical variables?
- The distribution of a variable tells us what values it takes and how often it takes these values.
- The joint distribution is just the counts of cases/proportions/percents in each possible combination of categories.
- A table of these counts is a contingency table, also called a two-way table.

```
tabdat <- table(email$spam, email$number)
rownames(tabdat) <- c("Not Spam", "Spam")
tabdat</pre>
```

|          | none | small | big |
|----------|------|-------|-----|
| Not Spam | 400  | 2659  | 495 |
| Spam     | 149  | 168   | 50  |

|          | none | small | big | total |
|----------|------|-------|-----|-------|
| Not Spam | 400  | 2659  | 495 | 3554  |
| Spam     | 149  | 168   | 50  | 367   |
| total    | 549  | 2827  | 545 | 3921  |

- What does 2659 represent?
- What does 495 represent?
- What does 3554 represent?
- What does 2827 represent?
- What does 3921 represent?

More informative: joint distribution in proportions:

```
prop.table(tabdat)
```

|          | none    | small   | big     |
|----------|---------|---------|---------|
| Not Spam | 0.10201 | 0.67814 | 0.12624 |
| Spam     | 0.03800 | 0.04285 | 0.01275 |

- What does 0.6781 represent?
- What does 0.1262 represent?

#### **Row Proportions**

#### row proportions

The row proportions are computed as the counts divided by the row totals.

```
prop.table(tabdat, margin = 1)
```

none small big Not Spam 0.1125 0.7482 0.1393 Spam 0.4060 0.4578 0.1362

- What does 0.7482 represent?
- What does 0.1393 represent?

### **Column Proportions**

#### column proportions

The column proportions are computed as the counts divided by the column totals.

```
prop.table(tabdat, margin = 2)
```

none small big Not Spam 0.72860 0.94057 0.90826 Spam 0.27140 0.05943 0.09174

- What does 0.9406 represent?
- What does 0.9083 represent?

- Row/column proportions help us determine if two categorical variables are associated.
- E.g. Is the distribution of spam conditioned on seeing no numbers different from the distribution of spam conditioned on seeing small numbers? If so, then number and spam are associated.
- Would these be row or column proportions?
- Can also look for associations by checking the distribution of number conditioned on an email being spam and the distribution of number contioned on an email not being spam.
- Would these be row or column proportions?

```
prop.table(tabdat, margin = 2)
```

|          | none    | small   | big     |
|----------|---------|---------|---------|
| Not Spam | 0.72860 | 0.94057 | 0.90826 |
| Spam     | 0.27140 | 0.05943 | 0.09174 |

- The row/column proportions represent conditional distributions.
- Each column is the distribution of spam conditioned on either no big number (column 1), a small number (column 2), or a big number (column 3).

```
prop.table(tabdat, margin = 1)
```

none small big Not Spam 0.1125 0.7482 0.1393 Spam 0.4060 0.4578 0.1362

- The row/column proportions represent conditional distributions.
- Each row is the distribution of number conditioned on either an email being not spam (first row) or spam (second row).

### Visualizing row proportions: segmented barplot



What does the bottom left box represent?

### Visualizing row proportions: standardized segmented barplot

barplot(prop.table(table(email\$spam, email\$number),

margin = 2),

xlab = "number", ylab = "spam")



What does the bottom left box represent?

#### Visualizing row proportions: segmented barplot



What does the bottom left box represent?

#### Visualizing row proportions: standardized segmented barplot

barplot(prop.table(table(email\$number, email\$spam),

margin = 2),

xlab = "spam", ylab = "number")



What does the bottom left box represent?

## Visualizing row proportions: mosaic plot

#### table(email\$spam, email\$number)



spam

Width proportional to the counts in each spam category. What does the bottom left box represent?

## Visualizing row proportions: mosaic plot

#### table(email\$number, email\$spam)



number

Width proportional to the counts in each number category. What does the bottom left box represent? • What in a mosaic plot are we looking for to see if two variables are associated?