# Densities and the Normal Distribution

David Gerard 2017-09-28

- Density Curves
- Normal curves
- QQ-plots
- Sections 2.5.1, 3.1.1, 3.1.2, 3.1.5, 3.2

# **Density Curves**

## A histogram of simulated data



## What if we decrease the binwidth?



## And more



## What do you notice?



Starting to look like a smooth curve!

• The distributions of many quantitative variables can be approximated by a density curve

#### density curve

A density curve describes the overall pattern of a distribution. The area under the curve and above any range of values is the proportion of all observations that fall in that range. A density cuve is a curve that

- Is always on or above the horizontal axis.
- Has area exactly 1 underneath it.

Observational units: Movies that sold tickets in 2015. Variables:

- rt Rotten tomatoes score normalized to a 5 point scale.
- meta Metacritic score normalized to a 5 point scale.
- imdb IMDB score normalized to a 5 point scale.
- fan Fandango score.

## **Density of Metacritic scores**

```
md <- density(movie$meta)
hist(movie$meta, freq = FALSE)
lines(md$x, md$y)</pre>
```



#### Histogram of movie\$meta

movie\$meta



E.g.: Area of shaded region is approximately the proportion of metracritic scores that falls between 2 and 4.



E.g.: Area of shaded region is approximately the proportion of metracritic scores that are less than 2.



E.g.: Area of shaded region is exactly 1.

## Smoothness

Just as you can control the bin-width of histograms, you can control the smoothness (aka "bandwidth") of density plots.

```
md <- density(movie$meta, bw = 0.1)
plot(md)</pre>
```





## More smooth

```
md <- density(movie$meta, bw = 0.2)
plot(md)</pre>
```



## More smooth

```
md <- density(movie$meta, bw = 0.3)
plot(md)</pre>
```



## Too smooth!

```
md <- density(movie$meta, bw = 0.5)
plot(md)</pre>
```



### median

The median of a density curve is the equal-areas point, the point that divides the area under the curve in half.

#### mean

The mean of a density curve is the balance point, at which the curve would balance if made of solid material.

Median



Median M is where half of the area is to the left and to the right of M.

## **Normal Density Curves**

A data frame with 1000 observations on the following 6 variables.

- sex Gender of the student.
- SATV Verbal SAT percentile.
- SATM Math SAT percentile.
- SATSum Total of verbal and math SAT percentiles.
- HSGPA High school grade point average.
- FYGPA First year (college) grade point average.

```
library(tidyverse)
data(satGPA, package = "openintro")
glimpse(satGPA)
```

Observations: 1,000

Variables: 6

\$ sex <int> 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2... \$ SATV <int> 65, 58, 56, 42, 55, 55, 57, 53, 67, 41, ... \$ SATM <int> 62, 64, 60, 53, 52, 56, 65, 62, 77, 44, ... \$ SATSum <int> 127, 122, 116, 95, 107, 111, 122, 115, 1... \$ HSGPA <dbl> 3.40, 4.00, 3.75, 3.75, 4.00, 4.00, 2.80... \$ FYGPA <dbl> 3.18, 3.33, 3.25, 2.42, 2.63, 2.91, 2.83...

## **Bell-shaped curves**

```
hist(satGPA$SATV, freq = FALSE)
md <- density(satGPA$SATV)
lines(md$x, md$y)</pre>
```



#### Histogram of satGPA\$SATV

One particular bell-shaped density curve is the normal density.

#### normal curve

The normal curve describes the normal distribution. It is bell-shaped and is defined by the equation:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2},$$

where  $\mu$  is the mean and  $\sigma$  is the standard deviation of the normal distribution.

- Symmetric, unimodal.
- Completely described by its mean  $\mu$  and its standard deviation (or variance)  $\sigma$ .
- 1 σ from μ is an inflection point a point where the 2nd derivative switches from positive to negative (or vice versa).
   I.e. transition from concave to convex (or vice versa).
- Many variables follow a normal distribution (test scores, physical measurements)
- Many chance processes converge to a normal distribution (more on this later).

## 68-95-99.7 rule

In the Normal distribution with mean  $\mu$  and standard deviation  $\sigma$ 

- Approximately 68% of the observations fall within  $\sigma$  of  $\mu$
- Approximately 95% of the observations fall within  $2\sigma$  of  $\mu$
- Approximately 99.7% of the observations fall within  $3\sigma$  of  $\mu$

This rule does not depend on the values of  $\mu$  and  $\sigma$ .



Use the 68-95-99.7 rule to answer these questions.

- What percentile is  $-3\sigma$ ? 0.0015
- What percentile is  $-2\sigma$ ?
- What percentile is  $-1\sigma$ ?
- What percentile is  $0\sigma$ ? 0.5
- What percentile is  $1\sigma$ ?
- What percentile is  $2\sigma$ ? 0.975
- What percentile is  $3\sigma$ ?

## **Checking for normality**

## Clearly not all distributions are normal



# It's sometimes important to check if normality is a valid approximation.

- Idea: Is the 68-95-99.7 rule approximately correct for the satGPA data?
- More generally, do the percentiles (quantiles) of the data match with the percentiles (quantiles) of the theoretical normal distribution?
- Compare the *p*th percentile (quantile) of the data and the *p*th percentile (quantile) of a N(x̄, s<sup>2</sup>) distribution. If they are pretty close, then normality is a good approximation.

## Look at percentiles (quantiles)

```
mu <- mean(satGPA$SATV)
sigma <- sd(satGPA$SATV)
qnorm(p = 0.2, mean = mu, sd = sigma)
[1] 42
quantile(x = satGPA$SATV, probs = 0.2)
20%
42</pre>
```

That matches almost exactly, what about other percentiles (quantiles)?

```
qnorm(p = 0.4, mean = mu, sd = sigma)
```

```
[1] 46.85
```

quantile(x = satGPA\$SATV, probs = 0.4)

```
40%
```

46

```
qnorm(p = 0.9, mean = mu, sd = sigma)
[1] 59.49
quantile(x = satGPA$SATV, probs = 0.9)
90%
60
```

These are all pretty close!

- Plots the observed quantiles against the quantiles of a  $N(\bar{x}, s^2)$  density.
- If the points lie close to a line, then the normal approximation is approximately correct.
- Can just plot the observed quantiles against *N*(0,1) and look for a straight line (more on why later).

## QQplot

# qqnorm(satGPA\$SATV) qqline(satGPA\$SATV)

#### Normal Q-Q Plot



## But what does a "good" qqplot look like?



Top left is real data, rest are simulated from  $N(\bar{x}, s^2)$  — looks good to me!

## Problem: Skewed right



## **Problem: Skewed left**



36

**Problem: Outliers** 



## **Problem: Heavy tails**



## Problem: Light tails

