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Learning Objectives

Density Curves
Normal curves

QQ-plots
Sections 2.5.1, 3.1.1, 3.1.2, 3.1.5, 3.2



Density Curves



A histogram of simulated data
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What if we decrease the binwidth?
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What do you notic

0.4-
0.3-
2
2 02-
[}
kel
0.1-
0.0- — 1
\ \ \
-2.5 0.0 25
sims

Starting to look like a smooth curve!



e The distributions of many quantitative variables can be
approximated by a

density curve

A describes the overall pattern of a distribution.

The area under the curve and above any range of values is the
proportion of all observations that fall in that range. A density
cuve is a curve that

e |s always on or above the horizontal axis.

e Has area exactly 1 underneath it.



Recall: Movie Scores

Observational units: Movies that sold tickets in 2015.

Variables:

e rt Rotten tomatoes score normalized to a 5 point scale.
e meta Metacritic score normalized to a 5 point scale.
e imdb IMDB score normalized to a 5 point scale.

e fan Fandango score.



Density of Metacritic scores

md <- density(movie$meta)
hist(movie$meta, freq = FALSE)
lines(md$x, md$y)

Histogram of movie$meta
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Density example
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E.g.: Area of shaded region is approximately the proportion of
metracritic scores that falls between 2 and 4.
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E.g.: Area of shaded region is approximately the proportion of
metracritic scores that are less than 2.



Density example

o
(VJ__
o
> 8 4
G o
c
S _
o
o
F!_
o
o
O__
o T T T T T T
0 1 2 3 4 5
meta

E.g.: Area of shaded region is exactly 1.



Just as you can control the bin-width of histograms, you can
control the smoothness (aka “bandwidth”) of density plots.

md <- density(movie$meta, bw = 0.1)

plot(md)
density.default(x = movie$meta, bw = 0.1)
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md <- density(movie$meta, bw = 0.2)

plot (md)
density.default(x = movie$meta, bw = 0.2)
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md <- density(movie$meta, bw = 0.3)

plot (md)
density.default(x = movie$meta, bw = 0.3)
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md <- density(movie$meta, bw = 0.5)

plot (md)
density.default(x = movie$meta, bw = 0.5)
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Mean and median

median
The of a density curve is the equal-areas point, the point
that divides the area under the curve in half.

mean
The of a density curve is the balance point, at which the
curve would balance if made of solid material.
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Median M is where half of the area is to the left and to the right
of M.



Normal Density Curves




Recall SAT scores

A data frame with 1000 observations on the following 6 variables.

e sex Gender of the student.

e SATV Verbal SAT percentile.

e SATM Math SAT percentile.

e SATSum Total of verbal and math SAT percentiles.
e HSGPA High school grade point average.

e FYGPA First year (college) grade point average.
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library(tidyverse)
data(satGPA, package = "openintro")
glimpse (satGPA)

Observations: 1,000

Variables: 6

sex <int> 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2...
SATV <int> 65, 58, 56, 42, 55, 55, 57, 53, 67, 41,
SATM <int> 62, 64, 60, 53, 52, 56, 65, 62, 77, 44,
SATSum <int> 127, 122, 116, 95, 107, 111, 122, 115, 1...
HSGPA <dbl> 3.40, 4.00, 3.75, 3.75, 4.00, 4.00, 2.80...
FYGPA <dbl> 3.18, 3.33, 3.25, 2.42, 2.63, 2.91, 2.83...

€hH H H P hH &P
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Bell-shaped curves

hist(satGPA$SATV, freq = FALSE)
md <- density(satGPA$SATV)
lines(md$x, md$y)

Histogram of satGPA$SATV
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Normal density

One particular bell-shaped density curve is the normal density.

normal curve
The describes the Cltis
bell-shaped and is defined by the equation:

1 = (e
f(xlu,0%) = <=5 220,

V2o

where 1 is the mean and o is the standard deviation of the

normal distribution.
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Facts about the normal density.

Symmetric, unimodal.

Completely described by its mean 1 and its standard deviation
(or variance) o.

1 o from p is an inflection point — a point where the 2nd
derivative switches from positive to negative (or vice versa).

l.e. transition from concave to convex (or vice versa).

Many variables follow a normal distribution (test scores,
physical measurements)

Many chance processes converge to a normal distribution
(more on this later).

23



68-95-99.7 rule

68-95-99.7 rule
In the Normal distribution with mean p and standard deviation o

e Approximately 68% of the observations fall within o of u
e Approximately 95% of the observations fall within 20 of
e Approximately 99.7% of the observations fall within 30 of

This rule does not depend on the values of 1 and o.
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68-95-99.7 rule

68-95-99.7 rule
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Percentiles

Use the 68-95-99.7 rule to answer these questions.

e What percentile is —307 0.0015
e What percentile is —207

e What percentile is —107

e What percentile is 067 0.5

e What percentile is 107

e What percentile is 207 0.975

e What percentile is 307
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Checking for normality




Clearly not all distributions are normal

Trump's tweet lengths
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It’s sometimes important to check if normality is a valid ap-

proximation.

e Idea: Is the 68-95-99.7 rule approximately correct for the
satGPA data?

e More generally, do the percentiles (quantiles) of the data
match with the percentiles (quantiles) of the theoretical
normal distribution?

e Compare the pth percentile (quantile) of the data and the pth
percentile (quantile) of a N(X, s2) distribution. If they are
pretty close, then normality is a good approximation.

28



Look at percentiles (quantiles)

mu <- mean(satGPA$SATV)
sigma <- sd(satGPA$SATV)

gnorm(p = 0.2, mean = mu, sd = sigma)
[1] 42
quantile(x = satGPA$SATV, probs = 0.2)

20%
42

That matches almost exactly, what about other percentiles
(quantiles)?

29



More percentiles (quantiles)

gnorm(p = 0.4, mean = mu, sd = sigma)
[1] 46.85
quantile(x = satGPA$SATV, probs = 0.4)

40%
46
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more percentiles(quantiles)

gnorm(p = 0.9, mean = mu, sd = sigma)
[1] 59.49
quantile(x = satGPA$SATV, probs = 0.9)

90%
60

These are all pretty close!
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Quantile-quantile plot

e Plots the observed quantiles against the quantiles of a
N(x,s?) density.
e |f the points lie close to a line, then the normal approximation

is approximately correct.

e Can just plot the observed quantiles against N(0,1) and look
for a straight line (more on why later).
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gqqnorm(satGPA$SATV)
gqline (satGPA$SATV)

Normal Q-Q Plot

Sample Quantiles
30 40 50 60 70
|

Theoretical Quantiles

33



But what does a “good” qqplot look like?
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Top left is real data, rest are simulated from N(X,s?) — looks
good to me!
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Problem: Skewed right

Histogram of x Normal Q-Q Plot
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Problem: Skewed left

Histogram of —x Normal Q-Q Plot
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Problem: QOutliers

Histogram of x Normal Q-Q Plot
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Problem: Heavy tails

Frequency
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Problem: Light tails

Frequency
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