Densities and the Normal Distribution

David Gerard
2017-09-28

Learning Objectives

- Density Curves
- Normal curves
- QQ-plots
- Sections 2.5.1, 3.1.1, 3.1.2, 3.1.5, 3.2

Density Curves

A histogram of simulated data

What if we decrease the binwidth?

And more

What do you notice?

Starting to look like a smooth curve!

Density curve

- The distributions of many quantitative variables can be approximated by a density curve

density curve

A density curve describes the overall pattern of a distribution. The area under the curve and above any range of values is the proportion of all observations that fall in that range. A density cuve is a curve that

- Is always on or above the horizontal axis.
- Has area exactly 1 underneath it.

Recall: Movie Scores

Observational units: Movies that sold tickets in 2015.
Variables:

- rt Rotten tomatoes score normalized to a 5 point scale.
- meta Metacritic score normalized to a 5 point scale.
- imdb IMDB score normalized to a 5 point scale.
- fan Fandango score.

Density of Metacritic scores

```
md <- density(movie$meta)
hist(movie$meta, freq = FALSE)
lines(md$x, md$y)
```

Histogram of movie\$meta

Density example

E.g.: Area of shaded region is approximately the proportion of metracritic scores that falls between 2 and 4 .

Density example

E.g.: Area of shaded region is approximately the proportion of metracritic scores that are less than 2.

Density example

E.g.: Area of shaded region is exactly 1 .

Smoothness

Just as you can control the bin-width of histograms, you can control the smoothness (aka "bandwidth") of density plots.
md <- density(movie\$meta, bw = 0.1)
plot(md)
density.default($\mathrm{x}=$ movie\$meta, $\mathrm{bw}=0.1$)

More smooth

```
md <- density(movie$meta, bw = 0.2)
plot(md)
```

density.default($\mathrm{x}=$ movie\$meta, $\mathrm{bw}=0.2$)

More smooth

```
md <- density(movie$meta, bw = 0.3)
plot(md)
```

density.default($\mathrm{x}=$ movie\$meta, $\mathrm{bw}=0.3$)

Too smooth!

```
md <- density(movie$meta, bw = 0.5)
plot(md)
```

density.default($\mathrm{x}=$ movie\$meta, $\mathrm{bw}=0.5$)

Mean and median

median

The median of a density curve is the equal-areas point, the point that divides the area under the curve in half.

mean

The mean of a density curve is the balance point, at which the curve would balance if made of solid material.

Median

Median M is where half of the area is to the left and to the right of M.

Normal Density Curves

Recall SAT scores

A data frame with 1000 observations on the following 6 variables.

- sex Gender of the student.
- SATV Verbal SAT percentile.
- SATM Math SAT percentile.
- SATSum Total of verbal and math SAT percentiles.
- HSGPA High school grade point average.
- FYGPA First year (college) grade point average.

satGPA

```
library(tidyverse)
data(satGPA, package = "openintro")
glimpse(satGPA)
```

Observations: 1,000
Variables: 6
\$ sex <int> 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2...
\$ SATV <int> $65,58,56,42,55,55,57,53,67,41, \ldots$
\$ SATM <int> 62, 64, 60, 53, 52, 56, 65, 62, 77, 44, ...
\$ SATSum <int> 127, 122, 116, 95, 107, 111, 122, 115, 1...
\$ HSGPA <dbl> 3.40, 4.00, 3.75, 3.75, 4.00, 4.00, 2.80...
\$ FYGPA <dbl> 3.18, 3.33, 3.25, 2.42, 2.63, 2.91, 2.83...

Bell-shaped curves

```
hist(satGPA$SATV, freq = FALSE)
md <- density(satGPA$SATV)
lines(md$x, md$y)
```

Histogram of satGPA\$SATV

Normal density

One particular bell-shaped density curve is the normal density.

normal curve

The normal curve describes the normal distribution. It is bell-shaped and is defined by the equation:

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

where μ is the mean and σ is the standard deviation of the normal distribution.

Facts about the normal density.

- Symmetric, unimodal.
- Completely described by its mean μ and its standard deviation (or variance) σ.
- 1σ from μ is an inflection point - a point where the 2 nd derivative switches from positive to negative (or vice versa). I.e. transition from concave to convex (or vice versa).
- Many variables follow a normal distribution (test scores, physical measurements)
- Many chance processes converge to a normal distribution (more on this later).

68-95-99.7 rule

68-95-99.7 rule

In the Normal distribution with mean μ and standard deviation σ

- Approximately 68% of the observations fall within σ of μ
- Approximately 95% of the observations fall within 2σ of μ
- Approximately 99.7% of the observations fall within 3σ of μ

This rule does not depend on the values of μ and σ.

68-95-99.7 rule

Percentiles

Use the 68-95-99.7 rule to answer these questions.

- What percentile is -3σ ? 0.0015
- What percentile is -2σ ?
- What percentile is -1σ ?
- What percentile is 0σ ? 0.5
- What percentile is 1σ ?
- What percentile is 2σ ? 0.975
- What percentile is 3σ ?

Checking for normality

Clearly not all distributions are normal

Trump's tweet lengths

It's sometimes important to check if normality is a valid approximation.

- Idea: Is the 68-95-99.7 rule approximately correct for the satGPA data?
- More generally, do the percentiles (quantiles) of the data match with the percentiles (quantiles) of the theoretical normal distribution?
- Compare the p th percentile (quantile) of the data and the p th percentile (quantile) of a $N\left(\bar{x}, s^{2}\right)$ distribution. If they are pretty close, then normality is a good approximation.

Look at percentiles (quantiles)

```
mu <- mean(satGPA$SATV)
sigma <- sd(satGPA$SATV)
qnorm(p = 0.2, mean = mu, sd = sigma)
[1] }4
quantile(x = satGPA$SATV, probs = 0.2)
20%
    4 2
That matches almost exactly, what about other percentiles (quantiles)?
```


More percentiles (quantiles)

```
qnorm(p = 0.4, mean = mu, sd = sigma)
[1] 46.85
quantile(x = satGPA$SATV, probs = 0.4)
40%
4 6
```


more percentiles(quantiles)

```
qnorm(p = 0.9, mean = mu, sd = sigma)
[1] 59.49
quantile(x = satGPA$SATV, probs = 0.9)
90%
    6 0
```

These are all pretty close!

Quantile-quantile plot

- Plots the observed quantiles against the quantiles of a $N\left(\bar{x}, s^{2}\right)$ density.
- If the points lie close to a line, then the normal approximation is approximately correct.
- Can just plot the observed quantiles against $N(0,1)$ and look for a straight line (more on why later).

QQplot

qqnorm(satGPA\$SATV)
 qqline(satGPA\$SATV)

Normal Q-Q Plot

But what does a "good" qqplot look like?

Top left is real data, rest are simulated from $N\left(\bar{x}, s^{2}\right)$ - looks good to me!

Problem: Skewed right

Histogram of \mathbf{x}

Normal Q-Q Plot

Theoretical Quantiles

Problem: Skewed left

Histogram of -x

Normal Q-Q Plot

Theoretical Quantiles

Problem: Outliers

Histogram of x

Normal Q-Q Plot

Problem: Heavy tails

Histogram of x

Normal Q-Q Plot

Problem: Light tails

Histogram of \mathbf{x}

Normal Q-Q Plot

Theoretical Quantiles

