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Learning Objectives

• Statistics/parameters

• Sampling Distribution

• Sections 1.3.1, 1.3.2, 1.3.3, 4.1, 4.4 in DBC
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Population and Sample



Recall: Population and Sample

population

A population is a set of cases (observational units) about which

information is wanted.

sample

A sample is a subset of the population.
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Examples

• We want to know demographic information of Americans so

we randomly select a group of 50 Americans and ask them a

bunch of questions. (sample? population?)

• We are interested in the quality of anchovies so we take 10

cans and taste them. (sample? population?)
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Why sample?

• It is expensive/impossible to collect information on the whole

population (when this is done it is called a census).

• Even when a census is performed, it is often less accurate

than a well-designed sample (hard to collect information on

everything, so this introduces biases into the observations you

see).

• With a large enough sample, we can be pretty sure of the

information we want on the population, making taking a

census unnecessary.
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Random Sampling

• Often, samples are collected randomly to remove bias.

• bias is where some cases are more likely to be in the sample

than other cases.

• E.g. some political pollsters mostly call landlines, which biases

the sample toward older individuals. What could be the issue

here?
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Statistics and Parameters

parameter

A parameter is a number that describes a population. It is

usually unknown and what we want information on. People

usually use greek letter µ, σ, ρ to represent parameters.

statistic

A statistic is a number that describes a sample. It is known and

is used to estimate a population parameter. People usually use

latin letters x̄ , s, r to represent statistics.
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Example

• We want to know the average height of U.S. males so we

measure the average height of a sample of 50 U.S. males and

came up with 5’11”. (parameter? statistic?)

8



The sample mean



Recall: NBA Data

Player statistics for the 2016-2017 season of the NBA

• player The name of the player.

• pts The total points for the season

• two pp Two point field goal percentage.

• three pp Three point field goal percentage.

• Many others ...

• Here, I only kept players that attempted at least 20 two-point

and 20 three-point field goals.
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Recall: NBA Data

library(tidyverse)

nba <- read_csv("../../data/nba2016.csv") %>%

filter(two_pa >= 20, three_pa >= 20) %>%

select(player, pts, two_pp, three_pp)

glimpse(nba)

Observations: 337

Variables: 4

$ player <chr> "Russell Westbrook", "James Harden", "...

$ pts <int> 2558, 2356, 2199, 2099, 2061, 2024, 20...

$ two_pp <dbl> 0.459, 0.530, 0.528, 0.524, 0.582, 0.4...

$ three_pp <dbl> 0.343, 0.347, 0.379, 0.299, 0.367, 0.3...
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The inference problem

• Suppose I want to know the average total points of NBA

players. However, I can only collect a sample of 5 players.

nsamp <- 5

samd <- sample(nba$pts, size = nsamp)

samd

[1] 709 479 130 1028 142
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Point Estimate

Of course, we know the actual mean number of points µ because

we have the entire population.

mean(nba$pts)

[1] 666.4

A good estimate might be the average of the sample x̄

mean(samd)

[1] 497.6
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Point Estimate

The sample average here is a point estimate of the population

mean.

point estimate

A point estimate is a single number used to estimate a

population parameter.
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Aside

• How would you estimate the population median?

• How would you estimate the population standard deviation?
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A different sample

However, since the sample was drawn at random, we could have

obtained a different sample, and so a different point estimate.

samd <- sample(nba$pts, size = nsamp)

samd

[1] 94 419 435 1742 1025

mean(samd)

[1] 743
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And another sample

samd <- sample(nba$pts, size = nsamp)

samd

[1] 1071 381 689 282 551

mean(samd)

[1] 594.8
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And another sample

samd <- sample(nba$pts, size = nsamp)

samd

[1] 327 59 700 281 107

mean(samd)

[1] 294.8
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And another sample

samd <- sample(nba$pts, size = nsamp)

samd

[1] 1002 425 1196 864 689

mean(samd)

[1] 835.2
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Sampling distribution

• With every sample we are getting a different x̄ .

• We can ask what possible values x̄ can take and how often it

takes those values.

• That is, we can ask about x̄ ’s distribution.
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Sampling distribution

sampling distribution

A sampling distribution is the distribution of a sample statistic.
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Repeat sample 1000 times.

itermax <- 1000

xbar_vec <- rep(NA, itermax)

for (index in 1:itermax) {
samd <- sample(nba$pts, size = nsamp)

xbar_vec[index] <- mean(samd)

}
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Plot the results

hist(xbar_vec, main = "")

abline(v = mean(nba$pts), lty = 2, col = 2, lwd = 2)

legend("topright", "pop mean", lty = 2, col = 2, lwd = 2)
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The sampling distribution

• The sample mean has the correct center.

• There is a lot of variability about that center though.

sd(xbar_vec)

[1] 227.7

standard error

The standard deviation associated with a point estimate is called

a standard error.
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What if we have a bigger sample

nsamp <- 10

xbar10_vec <- rep(NA, itermax)

for (index in 1:itermax) {
samd <- sample(nba$pts, size = nsamp)

xbar10_vec[index] <- mean(samd)

}
sd(xbar10_vec)

[1] 156.3
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What if we have a bigger sample

nsamp <- 50

xbar50_vec <- rep(NA, itermax)

for (index in 1:itermax) {
samd <- sample(nba$pts, size = nsamp)

xbar50_vec[index] <- mean(samd)

}
sd(xbar50_vec)

[1] 66.51
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What if we have a bigger sample

nsamp <- 100

xbar100_vec <- rep(NA, itermax)

for (index in 1:itermax) {
samd <- sample(nba$pts, size = nsamp)

xbar100_vec[index] <- mean(samd)

}
sd(xbar100_vec)

[1] 42.61
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Standard error decreases with larger sample sizes!
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Standard error

standard error

Given n independent observations from a population with

standard deviation σ, the standard error of the sample mean is

equal to

SE =
σ√
n
.

• Since σ is generally unknown, we estimate SE with s/
√
n,

where s is the sample standard deviation.
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What happens as sample size increases?

Histogram of points
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What happens as sample size increases?

Histogram of xbar

Mean Points, n = 5
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What happens as sample size increases?

Histogram of xbar

Mean Points, n = 5
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Wat happens as the sample size increases?

n = 1

qqnorm(nba$pts)

qqline(nba$pts)
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Wat happens as the sample size increases?

n = 5

qqnorm(xbar_vec)

qqline(xbar_vec)
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Wat happens as the sample size increases?

n = 50

qqnorm(xbar50_vec)

qqline(xbar50_vec)
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General result

• In general, sample means converge to a normal distribution as

the sample size increases.

• Many other statistics do this as well (proportions, medians,

standard devaitions).

• We will provide a heuristic proof of this result later.
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Skewed distributions

For highly skewed distributions, it takes more samples for normality

to be a good approximation.

data(email, package = "openintro")

hist(email$num_char)

Histogram of email$num_char
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Skewed distributions, n = 5

Histogram of xvec
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Skewed distributions, n = 10

Histogram of xvec

xvec

F
re

qu
en

cy

5 10 15 20 25 30

0
50

10
0

15
0

20
0

38



Skewed distributions, n = 50

Histogram of xvec

xvec

F
re

qu
en

cy

6 8 10 12 14 16 18

0
50

10
0

15
0

20
0

39



Skewed distributions, n = 100

Histogram of xvec
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More sampling distributions



Every statistic has a sampling distribution

nsamp <- 50

sd_vec <- rep(NA, itermax)

for (index in 1:itermax) {
samd <- sample(nba$pts, size = nsamp)

sd_vec[index] <- sd(samd)

}
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Every statistic has a sampling distribution

hist(sd_vec, main = "Sampling distribution

of sample standard deviation",

xlab = "sd")

Sampling distribution
     of sample standard deviation
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Every statistic has a sampling distribution

nsamp <- 50

med_vec <- rep(NA, itermax)

for (index in 1:itermax) {
samd <- sample(nba$pts, size = nsamp)

med_vec[index] <- median(samd)

}
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Every statistic has a sampling distribution

hist(med_vec, main = "Sampling distribution

of sample median",

xlab = "median")

Sampling distribution
     of sample median
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Every statistic has a sampling distribution, but not all sampling

distributions converge to a normal

nsamp <- 50

max_vec <- rep(NA, itermax)

for (index in 1:itermax) {
samd <- sample(nba$pts, size = nsamp)

max_vec[index] <- max(samd)

}
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Every statistic has a sampling distribution, but not all sampling

distributions converge to a normal

hist(max_vec, main = "Sampling distribution

of sample maximum",

xlab = "max")

Sampling distribution
     of sample maximum

max

F
re

qu
en

cy

1200 1400 1600 1800 2000 2200 2400 2600

0
50

15
0

25
0

46


	Population and Sample
	The sample mean
	More sampling distributions

