Sampling Distributions

David Gerard
2017-09-18

Learning Objectives

- Statistics/parameters
- Sampling Distribution
- Sections 1.3.1, 1.3.2, 1.3.3, 4.1, 4.4 in DBC

Population and Sample

Recall: Population and Sample

population

A population is a set of cases (observational units) about which information is wanted.

sample

A sample is a subset of the population.

Examples

- We want to know demographic information of Americans so we randomly select a group of 50 Americans and ask them a bunch of questions. (sample? population?)
- We are interested in the quality of anchovies so we take 10 cans and taste them. (sample? population?)

Why sample?

- It is expensive/impossible to collect information on the whole population (when this is done it is called a census).
- Even when a census is performed, it is often less accurate than a well-designed sample (hard to collect information on everything, so this introduces biases into the observations you see).
- With a large enough sample, we can be pretty sure of the information we want on the population, making taking a census unnecessary.

Random Sampling

- Often, samples are collected randomly to remove bias.
- bias is where some cases are more likely to be in the sample than other cases.
- E.g. some political pollsters mostly call landlines, which biases the sample toward older individuals. What could be the issue here?

Statistics and Parameters

parameter

A parameter is a number that describes a population. It is usually unknown and what we want information on. People usually use greek letter μ, σ, ρ to represent parameters.

statistic

A statistic is a number that describes a sample. It is known and is used to estimate a population parameter. People usually use latin letters \bar{x}, s, r to represent statistics.

Example

- We want to know the average height of U.S. males so we measure the average height of a sample of 50 U.S. males and came up with 5'11'. (parameter? statistic?)

The sample mean

Recall: NBA Data

Player statistics for the 2016-2017 season of the NBA

- player The name of the player.
- pts The total points for the season
- two_pp Two point field goal percentage.
- three_pp Three point field goal percentage.
- Many others ...
- Here, I only kept players that attempted at least 20 two-point and 20 three-point field goals.

Recall: NBA Data

```
library(tidyverse)
nba <- read_csv("../../data/nba2016.csv") %>%
    filter(two_pa >= 20, three_pa >= 20) %>%
    select(player, pts, two_pp, three_pp)
glimpse(nba)
Observations: 337
Variables: 4
$ player <chr> "Russell Westbrook", "James Harden",
$ pts <int> 2558, 2356, 2199, 2099, 2061, 2024, 20...
$ two_pp <dbl> 0.459, 0.530, 0.528, 0.524, 0.582, 0.4...
$ three_pp <dbl> 0.343, 0.347, 0.379, 0.299, 0.367, 0.3...
```


The inference problem

- Suppose I want to know the average total points of NBA players. However, I can only collect a sample of 5 players.

```
nsamp <- 5
samd <- sample(nba$pts, size = nsamp)
samd
[1] 709 479 130}1028 14
```


Point Estimate

Of course, we know the actual mean number of points μ because we have the entire population.
mean(nba\$pts)
[1] 666.4

A good estimate might be the average of the sample \bar{x}
mean(samd)
[1] 497.6

Point Estimate

The sample average here is a point estimate of the population mean.

point estimate

A point estimate is a single number used to estimate a population parameter.

Aside

- How would you estimate the population median?
- How would you estimate the population standard deviation?

A different sample

However, since the sample was drawn at random, we could have obtained a different sample, and so a different point estimate.
samd <- sample(nba\$pts, size = nsamp)
samd
[1] $94 \quad 419 \quad 435 \quad 1742 \quad 1025$
mean(samd)
[1] 743

And another sample

```
samd <- sample(nba$pts, size = nsamp)
samd
    [1] 1071 381 689
mean(samd)
    [1] 594.8
```


And another sample

```
samd <- sample(nba$pts, size = nsamp)
samd
    [1] 327 59 700 281 107
mean(samd)
    [1] 294.8
```


And another sample

```
samd <- sample(nba$pts, size = nsamp)
samd
    [1] 1002 425}101196 864 689
mean(samd)
    [1] 835.2
```


Sampling distribution

- With every sample we are getting a different \bar{x}.
- We can ask what possible values \bar{x} can take and how often it takes those values.
- That is, we can ask about \bar{x} 's distribution.

Sampling distribution

sampling distribution
A sampling distribution is the distribution of a sample statistic.

Repeat sample 1000 times.

```
itermax <- }100
xbar_vec <- rep(NA, itermax)
for (index in 1:itermax) {
    samd <- sample(nba$pts, size = nsamp)
    xbar_vec[index] <- mean(samd)
}
```


Plot the results

hist(xbar_vec, main = "")
abline(v = mean(nba\$pts), lty = 2, col = 2, lwd = 2)
legend("topright", "pop mean", lty = 2, col = 2, lwd = 2)

The sampling distribution

- The sample mean has the correct center.
- There is a lot of variability about that center though.
sd(xbar_vec)
[1] 227.7
standard error
The standard deviation associated with a point estimate is called a standard error.

What if we have a bigger sample

```
nsamp <- 10
xbar10_vec <- rep(NA, itermax)
for (index in 1:itermax) {
    samd <- sample(nba$pts, size = nsamp)
    xbar10_vec[index] <- mean(samd)
}
sd(xbar10_vec)
[1] 156.3
```


What if we have a bigger sample

```
nsamp <- 50
xbar50_vec <- rep(NA, itermax)
for (index in 1:itermax) {
    samd <- sample(nba$pts, size = nsamp)
    xbar50_vec[index] <- mean(samd)
}
sd(xbar50_vec)
[1] 66.51
```


What if we have a bigger sample

```
nsamp <- }10
xbar100_vec <- rep(NA, itermax)
for (index in 1:itermax) {
    samd <- sample(nba$pts, size = nsamp)
    xbar100_vec[index] <- mean(samd)
}
sd(xbar100_vec)
[1] 42.61
```


Standard error decreases with larger sample sizes!

Dashed red line is population mean.

Standard error

standard error

Given n independent observations from a population with standard deviation σ, the standard error of the sample mean is equal to

$$
S E=\frac{\sigma}{\sqrt{n}} .
$$

- Since σ is generally unknown, we estimate SE with s / \sqrt{n}, where s is the sample standard deviation.

What happens as sample size increases?

Histogram of points

What happens as sample size increases?

Histogram of xbar

What happens as sample size increases?

Histogram of xbar

Wat happens as the sample size increases?

$n=1$
qqnorm(nba\$pts)
qqline (nba\$pts)

Normal Q-Q Plot

Theoretical Quantiles

Wat happens as the sample size increases?

```
n=5
qqnorm(xbar_vec)
qqline(xbar_vec)
```


Normal Q-Q Plot

Wat happens as the sample size increases?

```
n=50
qqnorm(xbar50_vec)
qqline(xbar50_vec)
```


Normal Q-Q Plot

General result

- In general, sample means converge to a normal distribution as the sample size increases.
- Many other statistics do this as well (proportions, medians, standard devaitions).
- We will provide a heuristic proof of this result later.

Skewed distributions

For highly skewed distributions, it takes more samples for normality to be a good approximation.
data(email, package = "openintro")
hist(email\$num_char)

Histogram of email\$num_char

Skewed distributions, $n=5$

Histogram of xvec

Skewed distributions, $n=10$

Histogram of xvec

Skewed distributions, $n=50$

Histogram of xvec

Skewed distributions, $n=100$

Histogram of xvec

More sampling distributions

Every statistic has a sampling distribution

```
nsamp <- 50
sd_vec <- rep(NA, itermax)
for (index in 1:itermax) {
    samd <- sample(nba$pts, size = nsamp)
    sd_vec[index] <- sd(samd)
}
```


Every statistic has a sampling distribution

```
hist(sd_vec, main = "Sampling distribution
of sample standard deviation",
xlab = "sd")
```

Sampling distribution of sample standard deviation

Every statistic has a sampling distribution

```
nsamp <- 50
med_vec <- rep(NA, itermax)
for (index in 1:itermax) {
    samd <- sample(nba$pts, size = nsamp)
    med_vec[index] <- median(samd)
}
```


Every statistic has a sampling distribution

```
hist(med_vec, main = "Sampling distribution
            of sample median",
            xlab = "median")
```

Sampling distribution of sample median

Every statistic has a sampling distribution, but not all sampling distributions converge to a normal

```
nsamp <- 50
max_vec <- rep(NA, itermax)
for (index in 1:itermax) {
    samd <- sample(nba$pts, size = nsamp)
    max_vec[index] <- max(samd)
}
```


Every statistic has a sampling distribution, but not all sampling distributions converge to a normal

```
hist(max_vec, main = "Sampling distribution
    of sample maximum",
    xlab = "max")
```


Sampling distribution
 of sample maximum

