## Proofs from axioms

David Gerard<br>2017-09-12

## Learning Objectives

- Proving probability results from axioms


## Recall: The Axioms of Probability

A probability on a sample space $S$ (and a set $\mathcal{A}$ of events) is a function which assigns each event $A($ in $\mathcal{A})$ a value in $[0,1]$ and satisfies the following rules:

- Axiom 1: All probabilities are nonnegative:

$$
P(A) \geq 0 \quad \text { for all events } A
$$

- Axiom 2: The probability of the whole sample space is 1 :

$$
P(S)=1
$$

- Axiom 3 (Addition Rule): If two events $A$ and $B$ are disjoint (have no outcomes in common) then

$$
P(A \cup B)=P(A)+P(B)
$$

## The Complement Rule

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
Show that $P\left(A^{c}\right)=1-P(A)$
This proof asks us to confirm an equation mathematical expression $A=$ mathematical expression $B$

General form of a proof:

- First, write down any existing definitions or previously proven facts you can think of that are related to any formulas/symbols appearing in expressions $A$ and $B$
- Start the proof with the left side (expression A) or with the most complex of the two expressions.
- Use algebra and established statistical facts to re-write this right-side expression until it equals the left-side


## The Complement Rule

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]

Show that $P\left(A^{c}\right)=1-P(A)$

## The Complement Rule

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]

Show that $P\left(A^{c}\right)=1-P(A)$

- $A \& A^{c}$ are disjoint (mutually exclusive, don't overlap). So, $P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)($ Axiom 3).


## The Complement Rule

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]

Show that $P\left(A^{c}\right)=1-P(A)$

- $A \& A^{c}$ are disjoint (mutually exclusive, don't overlap). So, $P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)($ Axiom 3).
- Also, $A \cup A^{c}=S$. So, $P\left(A \cup A^{c}\right)=P(S)=1$ (Axiom 2).


## The Complement Rule

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]

Show that $P\left(A^{c}\right)=1-P(A)$

- $A \& A^{c}$ are disjoint (mutually exclusive, don't overlap). So, $P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)($ Axiom 3).
- Also, $A \cup A^{c}=S$. So, $P\left(A \cup A^{c}\right)=P(S)=1$ (Axiom 2).
- Therefore, $P(A)+P\left(A^{c}\right)=1$.


## The Complement Rule

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]

Show that $P\left(A^{c}\right)=1-P(A)$

- $A \& A^{c}$ are disjoint (mutually exclusive, don't overlap). So, $P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)($ Axiom 3).
- Also, $A \cup A^{c}=S$. So, $P\left(A \cup A^{c}\right)=P(S)=1$ (Axiom 2).
- Therefore, $P(A)+P\left(A^{c}\right)=1$.
- That is, $P\left(A^{c}\right)=1-P(A)$.


## The Complement Rule

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]

Show that $P\left(A^{c}\right)=1-P(A)$

- $A \& A^{c}$ are disjoint (mutually exclusive, don't overlap). So, $P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)($ Axiom 3).
- Also, $A \cup A^{c}=S$. So, $P\left(A \cup A^{c}\right)=P(S)=1$ (Axiom 2).
- Therefore, $P(A)+P\left(A^{c}\right)=1$.
- That is, $P\left(A^{c}\right)=1-P(A)$.

We only needed 1st step of proof algorithm this time - gather info.

## Isn't $0 \leq P(A) \leq 1$ ? <br> ...but Axiom 1 is just $P(A) \geq 0$.

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.

Let's prove that $P(A) \leq 1$.

## Isn't $0 \leq P(A) \leq 1$ ? <br> ...but Axiom 1 is just $P(A) \geq 0$.

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.

Let's prove that $P(A) \leq 1$.

- By the complement rule, $1-P(A)=P\left(A^{c}\right)$


## Isn't $0 \leq P(A) \leq 1$ ? <br> ...but Axiom 1 is just $P(A) \geq 0$.

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.

Let's prove that $P(A) \leq 1$.

- By the complement rule, $1-P(A)=P\left(A^{c}\right)$
- and $P\left(A^{c}\right) \geq 0$ (Axiom 1).


## Isn't $0 \leq P(A) \leq 1$ ? <br> ...but Axiom 1 is just $P(A) \geq 0$.

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.

Let's prove that $P(A) \leq 1$.

- By the complement rule, $1-P(A)=P\left(A^{c}\right)$
- and $P\left(A^{c}\right) \geq 0$ (Axiom 1).
- So, $1-P(A) \geq 0 \quad \Longrightarrow \quad 1 \geq P(A)$.


## Some more probability facts

We can also prove ...

- The Law of Total Probability $=$ Partition Rule

$$
\begin{aligned}
P(A) & =P(A \cap B)+P\left(A \cap B^{c}\right) \\
\text { or } P(A) & =P(A \cap B)+P\left(" A-B^{\prime \prime}\right)
\end{aligned}
$$

- The Inclusion-Exclusion Formula

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- Probability for subsets If $A \subseteq B$, then $P(A) \leq P(B)$

Let's try to prove the last one.

## Proving a Conditional Statement

If $A \subseteq B$, then $P(A) \leq P(B)$
This proof asks us to confirm a conditional statement:
If statement $A$ is true, then statement $B$ must also be true (the opposite direction might not hold)

General form of a proof:

- First, review existing definitions or previously proven facts related to statements $A$ and $B$
- Start the proof by stating that statement A is true
- Use algebra and established statistical facts to write a series of "then" statements that logically follow from statement $A$; eventually leading logically to statement B


## Proving a Conditional Statement

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]
Show that if $A \subseteq B$, then $P(A) \leq P(B)$
Suppose $A \subseteq B$.

## Proving a Conditional Statement

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]
Show that if $A \subseteq B$, then $P(A) \leq P(B)$
Suppose $A \subseteq B$.

- Then, $A \cap B=A$


## Proving a Conditional Statement

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]
Show that if $A \subseteq B$, then $P(A) \leq P(B)$
Suppose $A \subseteq B$.

- Then, $A \cap B=A$
- Always true: $P(A \cap B)+P\left(A^{c} \cap B\right)=P(B)$
(law of total probability)


## Proving a Conditional Statement

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]
Show that if $A \subseteq B$, then $P(A) \leq P(B)$
Suppose $A \subseteq B$.

- Then, $A \cap B=A$
- Always true: $P(A \cap B)+P\left(A^{c} \cap B\right)=P(B)$
(law of total probability)
- So, $P(A)+P\left(A^{c} \cap B\right)=P(B)$


## Proving a Conditional Statement

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]
Show that if $A \subseteq B$, then $P(A) \leq P(B)$
Suppose $A \subseteq B$.

- Then, $A \cap B=A$
- Always true: $P(A \cap B)+P\left(A^{c} \cap B\right)=P(B)$
(law of total probability)
- So, $P(A)+P\left(A^{c} \cap B\right)=P(B)$
- and $P(A) \leq P(A)+P\left(A^{c} \cap B\right)$

$$
\text { since } P\left(A^{c} \cap B\right) \geq 0 \quad(\text { Axiom } 1)
$$

## Proving a Conditional Statement

The axioms are the fundamental building blocks of probability.
Any other probability relationships can be derived from the axioms.
[Some knowledge of sets will be needed too.]
Show that if $A \subseteq B$, then $P(A) \leq P(B)$
Suppose $A \subseteq B$.

- Then, $A \cap B=A$
- Always true: $P(A \cap B)+P\left(A^{c} \cap B\right)=P(B)$
(law of total probability)
- So, $P(A)+P\left(A^{c} \cap B\right)=P(B)$
- and $P(A) \leq P(A)+P\left(A^{c} \cap B\right)$ since $P\left(A^{c} \cap B\right) \geq 0 \quad$ (Axiom 1)
- Putting everything together... $P(A) \leq P(B)$

