Conditional Probability and Independence

David Gerard
2017-09-28

Learning Objectives

- Conditional Probability
- Independence
- Sections 2.1.6 and 2.2 in DBC

Conditional Probability

Probability gives chances for events in outcome set S.
Often: Have partial information about event of interest.
Example: Number of Deaths in the U.S. in 1996

Cause	All ages	$1-4$	$5-14$	$15-24$	$25-44$	$45-64$	≥ 65
Heart	733,125	207	341	920	16,261	102,510	612,886
Cancer	544,161	440	1,035	1,642	22,147	132,805	386,092
HIV	32,003	149	174	420	22,795	8,443	22
Accidents	92,998	2,155	3,521	13,872	26,554	16,332	30,564
Homicide 2	24,486	395	513	6,548	9,261	7,717	52
All causes	$2,171,935$	5,947	8,465	32,699	148,904	380,396	$1,717,218$

${ }^{1}$ Accidents and adverse effects, ${ }^{2}$ Homicide and legal intervention
Probabilities and conditional probabilities for causes of death:

- $P($ accident $)=$
- $P(5 \leq$ age $\leq 14)=$
- $P($ accident and $5 \leq$ age $\leq 14)=$
- $P($ accident $\mid 5 \leq$ age $\leq 14)=$

Conditional Probability

Probability gives chances for events in outcome set S.
Often: Have partial information about event of interest.
Example: Number of Deaths in the U.S. in 1996

Cause	All ages	$1-4$	$5-14$	$15-24$	$25-44$	$45-64$	≥ 65
Heart	733,125	207	341	920	16,261	102,510	612,886
Cancer	544,161	440	1,035	1,642	22,147	132,805	386,092
HIV	32,003	149	174	420	22,795	8,443	22
Accidents 1	92,998	2,155	3,521	13,872	26,554	16,332	30,564
Homicide 2	24,486	395	513	6,548	9,261	7,717	52
All causes	$2,171,935$	5,947	8,465	32,699	148,904	380,396	$1,717,218$

${ }^{1}$ Accidents and adverse effects, ${ }^{2}$ Homicide and legal intervention
Probabilities and conditional probabilities for causes of death:

- $P($ accident $)=92,998 / 2,171,935=0.04282$
- $P(5 \leq$ age $\leq 14)=$
- $P($ accident and $5 \leq$ age $\leq 14)=$
- $P($ accident $\mid 5 \leq$ age $\leq 14)=$

Conditional Probability

Probability gives chances for events in outcome set S.
Often: Have partial information about event of interest.
Example: Number of Deaths in the U.S. in 1996

Cause	All ages	$1-4$	$5-14$	$15-24$	$25-44$	$45-64$	≥ 65
Heart	733,125	207	341	920	16,261	102,510	612,886
Cancer	544,161	440	1,035	1,642	22,147	132,805	386,092
HIV	32,003	149	174	420	22,795	8,443	22
Accidents 1	92,998	2,155	3,521	13,872	26,554	16,332	30,564
Homicide 2	24,486	395	513	6,548	9,261	7,717	52
All causes	$2,171,935$	5,947	8,465	32,699	148,904	380,396	$1,717,218$

${ }^{1}$ Accidents and adverse effects, ${ }^{2}$ Homicide and legal intervention
Probabilities and conditional probabilities for causes of death:

- $P($ accident $)=92,998 / 2,171,935=0.04282$
- $P(5 \leq$ age $\leq 14)=8,465 / 2,171,935=0.00390$
- $P($ accident and $5 \leq$ age $\leq 14)=$
- $P($ accident $\mid 5 \leq$ age $\leq 14)=$

Conditional Probability

Probability gives chances for events in outcome set S.
Often: Have partial information about event of interest.
Example: Number of Deaths in the U.S. in 1996

Cause	All ages	$1-4$	$5-14$	$15-24$	$25-44$	$45-64$	≥ 65
Heart	733,125	207	341	920	16,261	102,510	612,886
Cancer	544,161	440	1,035	1,642	22,147	132,805	386,092
HIV	32,003	149	174	420	22,795	8,443	22
Accidents 1	92,998	2,155	3,521	13,872	26,554	16,332	30,564
Homicide 2	24,486	395	513	6,548	9,261	7,717	52
All causes	$2,171,935$	5,947	8,465	32,699	148,904	380,396	$1,717,218$

${ }^{1}$ Accidents and adverse effects, ${ }^{2}$ Homicide and legal intervention
Probabilities and conditional probabilities for causes of death:

- $P($ accident $)=92,998 / 2,171,935=0.04282$
- $P(5 \leq$ age $\leq 14)=8,465 / 2,171,935=0.00390$
- $P($ accident and $5 \leq$ age $\leq 14)=3,521 / 2,171,935=0.00162$
- $P($ accident $\mid 5 \leq$ age $\leq 14)=$

Conditional Probability

Probability gives chances for events in outcome set S.
Often: Have partial information about event of interest.
Example: Number of Deaths in the U.S. in 1996

Cause	All ages	$1-4$	$5-14$	$15-24$	$25-44$	$45-64$	≥ 65
Heart	733,125	207	341	920	16,261	102,510	612,886
Cancer	544,161	440	1,035	1,642	22,147	132,805	386,092
HIV	32,003	149	174	420	22,795	8,443	22
Accidents 1	92,998	2,155	3,521	13,872	26,554	16,332	30,564
Homicide 2	24,486	395	513	6,548	9,261	7,717	52
All causes	$2,171,935$	5,947	8,465	32,699	148,904	380,396	$1,717,218$

${ }^{1}$ Accidents and adverse effects, ${ }^{2}$ Homicide and legal intervention
Probabilities and conditional probabilities for causes of death:

- $P($ accident $)=92,998 / 2,171,935=0.04282$
- $P(5 \leq$ age $\leq 14)=8,465 / 2,171,935=0.00390$
- $P($ accident and $5 \leq$ age $\leq 14)=3,521 / 2,171,935=0.00162$
- $P($ accident $\mid 5 \leq$ age $\leq 14)=3,521 / 8,465=0.41595$

Conditional Probability

$$
P(\text { accident } \mid 5 \leq \text { age } \leq 14)
$$

Conditional Probability

Conditional probability of A given B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { if } P(B)>0
$$

Conditional Probability

$$
P(\text { accident } \mid 5 \leq \text { age } \leq 14)=\frac{3,521}{8,465}
$$

Conditional Probability

Conditional probability of A given B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { if } P(B)>0
$$

Conditional Probability

$$
P(\text { accident } \mid 5 \leq \text { age } \leq 14)=\frac{3,521}{8,465}=\frac{3,521 / 2,171,935}{8,465 / 2,171,935}
$$

Conditional Probability
Conditional probability of A given B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { if } P(B)>0
$$

Conditional Probability

$$
\begin{aligned}
P(\text { accident } \mid 5 \leq \text { age } \leq 14) & =\frac{3,521}{8,465}=\frac{3,521 / 2,171,935}{8,465 / 2,171,935} \\
& =\frac{P(\text { accident and } 5 \leq \text { age } \leq 14)}{P(5 \leq \text { age } \leq 14)}
\end{aligned}
$$

Conditional Probability
Conditional probability of A given B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { if } P(B)>0
$$

Conditional Probability

\leadsto measure conditional probability with respect to a subset of S
Conditional probability of A given B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { if } P(B)>0
$$

If $P(B)=0$ then $P(A \mid B)$ is undefined.

Multiplication rule:
$P(A \cap B)=P(A \mid B) \times P(B)$.

Independence

Example: Roll two fair dice
What is probability that 2nd die shows $\bullet P\left(2\right.$ nd die $=\square \bullet=\frac{1}{6}$
What is probability 2nd die shows \bullet if 1st die showed \bullet ?

$$
P\left(\text { 2nd die }=\bullet \bullet \text { 1st die }=\square \bullet \frac{1}{6}\right.
$$

....and if the 1st die did not show

$$
P(\text { 2nd die }=\square \bullet \text { 1st die } \neq \bullet)=\frac{1}{6}
$$

Independence

The event A is independent of the event B if its chances are not affected by the occurrence of B,

$$
P(A \mid B)=P(A)
$$

You can show that the following definitions of independence are equivalent.
Independence
Events A and B are independent if

$$
\begin{aligned}
P(A \mid B) & =P(A) \text { if and only if } \\
P(B \mid A) & =P(B) \text { if and only if } \\
P(A \cap B) & =P(A) \times P(B)
\end{aligned}
$$

Independence

Suppose event A is independent of event B.
Then, knowing that B has occurred does not effect the probability of event A occurring: $P(A \mid B)=P(A)$. Now,

$$
P(B \mid A)
$$

Thus, event B is independent of event A.
The argument in the other direction is exactly the same.
So, the following two statements are equivalent:

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B)
$$

and we simply state that events A and B are independent.

Independence

Suppose event A is independent of event B.
Then, knowing that B has occurred does not effect the probability of event A occurring: $P(A \mid B)=P(A)$. Now,

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Thus, event B is independent of event A.
The argument in the other direction is exactly the same.
So, the following two statements are equivalent:

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B)
$$

and we simply state that events A and B are independent.

Independence

Suppose event A is independent of event B.
Then, knowing that B has occurred does not effect the probability of event A occurring: $P(A \mid B)=P(A)$. Now,

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(A \mid B) P(B)}{P(A)}
$$

Thus, event B is independent of event A.
The argument in the other direction is exactly the same.
So, the following two statements are equivalent:

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B)
$$

and we simply state that events A and B are independent.

Independence

Suppose event A is independent of event B.
Then, knowing that B has occurred does not effect the probability of event A occurring: $P(A \mid B)=P(A)$. Now,

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(A \mid B) P(B)}{P(A)}=\frac{P(A) P(B)}{P(A)}
$$

Thus, event B is independent of event A.
The argument in the other direction is exactly the same.
So, the following two statements are equivalent:

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B)
$$

and we simply state that events A and B are independent.

Independence

Suppose event A is independent of event B.
Then, knowing that B has occurred does not effect the probability of event A occurring: $P(A \mid B)=P(A)$. Now,

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(A \mid B) P(B)}{P(A)}=\frac{P(A) P(B)}{P(A)}=P(B)
$$

Thus, event B is independent of event A.
The argument in the other direction is exactly the same.
So, the following two statements are equivalent:

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B)
$$

and we simply state that events A and B are independent.

Independence

Also, if A and B are independent events, then

$$
P(A \cap B)
$$

and in the other direction... If $P(A \cap B)=P(A) P(B)$, then

$$
P(A \mid B)
$$

Thus, the following three statements are equivalent definitions of independence of events A and B :

$$
\begin{gathered}
P(A \mid B)=P(A) \\
P(B \mid A)=P(B) \\
P(A \cap B)=P(A) \times P(B)
\end{gathered}
$$

Independence

Also, if A and B are independent events, then

$$
P(A \cap B)=P(A \mid B) P(B)
$$

and in the other direction... If $P(A \cap B)=P(A) P(B)$, then

$$
P(A \mid B)
$$

Thus, the following three statements are equivalent definitions of independence of events A and B :

$$
\begin{gathered}
P(A \mid B)=P(A) \\
P(B \mid A)=P(B) \\
P(A \cap B)=P(A) \times P(B)
\end{gathered}
$$

Independence

Also, if A and B are independent events, then

$$
P(A \cap B)=P(A \mid B) P(B)=P(A) P(B)
$$

and in the other direction... If $P(A \cap B)=P(A) P(B)$, then

$$
P(A \mid B)
$$

Thus, the following three statements are equivalent definitions of independence of events A and B :

$$
\begin{gathered}
P(A \mid B)=P(A) \\
P(B \mid A)=P(B) \\
P(A \cap B)=P(A) \times P(B)
\end{gathered}
$$

Independence

Also, if A and B are independent events, then

$$
P(A \cap B)=P(A \mid B) P(B)=P(A) P(B)
$$

and in the other direction... If $P(A \cap B)=P(A) P(B)$, then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Thus, the following three statements are equivalent definitions of independence of events A and B :

$$
\begin{gathered}
P(A \mid B)=P(A) \\
P(B \mid A)=P(B) \\
P(A \cap B)=P(A) \times P(B)
\end{gathered}
$$

Independence

Also, if A and B are independent events, then

$$
P(A \cap B)=P(A \mid B) P(B)=P(A) P(B)
$$

and in the other direction... If $P(A \cap B)=P(A) P(B)$, then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}
$$

Thus, the following three statements are equivalent definitions of independence of events A and B :

$$
\begin{gathered}
P(A \mid B)=P(A) \\
P(B \mid A)=P(B) \\
P(A \cap B)=P(A) \times P(B)
\end{gathered}
$$

Independence

Also, if A and B are independent events, then

$$
P(A \cap B)=P(A \mid B) P(B)=P(A) P(B)
$$

and in the other direction... If $P(A \cap B)=P(A) P(B)$, then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A)
$$

Thus, the following three statements are equivalent definitions of independence of events A and B :

$$
\begin{gathered}
P(A \mid B)=P(A) \\
P(B \mid A)=P(B) \\
P(A \cap B)=P(A) \times P(B)
\end{gathered}
$$

Comparison: Independence vs Disjoint Events

- Disjoint event are not independent: for disjoint events, even if $P(A)>0, P(A \mid B)=0$.
- Disjoint events can use a special case of the inclusion/exclusion formula:

$$
P(A \cup B)=P(A)+P(B)-P(A \text { and } B)=P(A)+P(B)
$$

- I sometimes call this the "or" rule.
- Independent events can use a special case of the multiplication rule: $P(A \cap B)=P(A \mid B) P(B)=P(A) P(B)$.
- I sometimes call this the "and" rule.
- Note: Independence cannot be displayed as a Venn diagram because it depends not just on the outcomes that make up the events, but also the probabilities of the events.

Exercise

If A and B are two independent events, prove that A^{c} is independent of B^{c}.

