Deriving the Binomial PMF

David Gerard
Most slides borrowed from Linda Collins
2017-09-28

Learning Objectives

- Bernoulli Random Variables
- Binomial Random Variables
- Sections 3.3.1 and 3.4 of DBC

A formula

- Sometimes, if you are lucky, the pmf may be written as an equation in terms of the value of the random variable.
- For the coin flipping example, we will derive this formula.
- Useful beyond just coins: What is the probabiliy of having 3 girls out of 4 children? I.e. many random variables follow the same distribution.

Using counting rules to determine probabilities i

Since outcomes in the random flip are equally likely, we just counted the outcomes to determine event probabilities.

Let's generalize the counting process for this probability model.

We want a formula for the number of outcomes having k heads out of 4 flips.

We begin with a discussion of permutations and
combinationsalso called binomial coefficients

Permutations

Permutations:

How many ways to order a group of 4 people?
4 choices for 1 st person $\times(3$ for 2 nd $) \times(2$ for 3 rd $) \times(1$ for 4 th. $)$
How many ways to order a group of n people?

$$
n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1=n!
$$

(Note: $n!$ is pronounced " n factorial.")

Combinations

Combinations, also called Binomial Coefficients:
(Let $n=5$ for the moment just for this one-slide example.)
How many ways to choose a committee of 2 from a group of 5 ?

$$
\begin{aligned}
& \frac{5 \text { choices for } 1 \text { st committee member } \times 4 \text { for } 2 \text { nd }}{2!\text { orderings of } 2 \text { person committee }} \\
& =\frac{5 \cdot 4 \cdot(3 \cdot 2 \cdot 1)}{2!(3 \cdot 2 \cdot 1)}=\frac{5!}{2!3!}
\end{aligned}
$$

How many ways to choose a committee of k from a group of n ?

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Note: $\binom{n}{k}$ is pronounced " n choose k."

Counting outcomes

Counting outcomes for 4 flips of a coin:

How many outcomes with 2 heads out of 4 flips?

Each sequence has four flips: \{First, Second, Third, Fourth\}.

How many outcomes have two heads
That is, now many ways can we choose two locations from four: \{First, Second, Third, Fourth\}?

There are $\binom{n}{k}=\binom{4}{2}$ ways!

Verify

- We can verify this directly
- HHTT, HTHT, HTTH, THHT, THTH, TTHH
- But this formula always works without having to directly count outcomes.

pmf

How many outcomes total?
2 choices for 1 st $\times(2$ for 2 nd $) \times(2$ for 3 rd $) \times(2$ for 4 th $)=2^{4}=16$.

Probability mass function for X :

$$
f(x)=\mathbf{P}(X=x)=\frac{\# \text { outcomes } \mathrm{w} / x \text { heads }}{\# \text { outcomes in total }}=\frac{\binom{4}{x}}{2^{4}}
$$

Using counting rules to determine probabilities

So, the number of outcomes satisfying $X=2$ is

$$
\begin{aligned}
\frac{4!}{2!} 2! & =\frac{4!}{2!(4-2)!}=\binom{4}{2}=" 4 \text { choose } 2 " \\
& =6
\end{aligned}
$$

$=$ the number of ways to arrange 2 heads among 4 flips
$S=\{H H H H$,
HHHT, HHTH, HTHH, THHH, HHTT, HTHT, HTTH, THTH, TTHH, THHT, HTTT, THTT, TTHT, TTTH, TTTT\}.

Using counting rules to determine probabilities

The number of ways to arrange x heads among 4 flips is $\binom{4}{x}$.

How many outcomes have 3 Heads?

Using counting rules to determine probabilities

The number of ways to arrange x heads among 4 flips is $\binom{4}{x}$.

How many outcomes have 3 Heads?

$$
\binom{4}{3}=\frac{4!}{3!(4-3)!}=\frac{24}{6(1)}=4
$$

Using counting rules to determine probabilities

Note that in real life, it's not quite true that the probability of having a boy $P(M)$ is equal to the probability of having a girl $P(F)$.

If $P(M) \neq P(F)$,
are all 4 outcomes with 3 females equally likely?

$$
(F F F M, F F M F, F M F F, M F F F)
$$

What is $P(F M F F)$?

Using counting rules to determine probabilities

What is P (FMFF)?

$$
P(F M F F)=P(M F F \mid F) \times P(F)
$$

Using counting rules to determine probabilities

What is P (FMFF)?

$$
\begin{align*}
P(F M F F) & =P(M F F \mid F) \times P(F) \\
& =P(M F F) \times P(F) \tag{*}
\end{align*}
$$

(*) by independence of gender by birth order

Using counting rules to determine probabilities

What is P (FMFF)?

$$
\begin{align*}
P(F M F F) & =P(M F F \mid F) \times P(F) \\
& =P(M F F) \times P(F) \tag{*}\\
& =[P(F F \mid M) \times P(M)] \times P(F)
\end{align*}
$$

(*) by independence of gender by birth order

Using counting rules to determine probabilities

What is P (FMFF)?

$$
\begin{align*}
P(F M F F) & =P(M F F \mid F) \times P(F) \\
& =P(M F F) \times P(F) \tag{*}\\
& =[P(F F \mid M) \times P(M)] \times P(F) \\
& =P(F F) \times P(M) \times P(F) \tag{*}
\end{align*}
$$

$(*)$ by independence of gender by birth order

Using counting rules to determine probabilities

What is P (FMFF)?

$$
\begin{align*}
P(F M F F) & =P(M F F \mid F) \times P(F) \\
& =P(M F F) \times P(F) \tag{*}\\
& =[P(F F \mid M) \times P(M)] \times P(F) \\
& =P(F F) \times P(M) \times P(F) \tag{*}\\
& =[P(F \mid F) \times P(F)] \times P(M) \times P(F)
\end{align*}
$$

$(*)$ by independence of gender by birth order

Using counting rules to determine probabilities

What is P (FMFF)?

$$
\begin{align*}
P(F M F F) & =P(M F F \mid F) \times P(F) \\
& =P(M F F) \times P(F) \tag{*}\\
& =[P(F F \mid M) \times P(M)] \times P(F) \\
& =P(F F) \times P(M) \times P(F) \tag{*}\\
& =[P(F \mid F) \times P(F)] \times P(M) \times P(F) \\
& =P(F) \times P(F) \times P(M) \times P(F) \tag{*}
\end{align*}
$$

(*) by independence of gender by birth order

Using counting rules to determine probabilities

What is P (FMFF)?

$$
\begin{align*}
P(F M F F) & =P(M F F \mid F) \times P(F) \\
& =P(M F F) \times P(F) \tag{*}\\
& =[P(F F \mid M) \times P(M)] \times P(F) \\
& =P(F F) \times P(M) \times P(F) \tag{*}\\
& =[P(F \mid F) \times P(F)] \times P(M) \times P(F) \\
& =P(F) \times P(F) \times P(M) \times P(F) \tag{*}\\
& =P(F)^{3} \times P(M)
\end{align*}
$$

$(*)$ by independence of gender by birth order

Using counting rules to determine probabilities

What is P (FMFF)?

$$
\begin{align*}
P(F M F F) & =P(M F F \mid F) \times P(F) \\
& =P(M F F) \times P(F) \tag{*}\\
& =[P(F F \mid M) \times P(M)] \times P(F) \\
& =P(F F) \times P(M) \times P(F) \tag{*}\\
& =[P(F \mid F) \times P(F)] \times P(M) \times P(F) \\
& =P(F) \times P(F) \times P(M) \times P(F) \tag{*}\\
& =P(F)^{3} \times P(M)
\end{align*}
$$

$(*)$ by independence of gender by birth order
Finally, $P(X=3)=\binom{4}{3} P(F)^{3} P(M)$

Using counting rules to determine probabilities

So, even if genders are not equally likely, we can find probabilities for $X=0,1,2,3$, and 4 .

First, let $p=P(F) \quad(0<p<1)$
then $P(M)=1-p$,
where $0 \leq p \leq 1$ is the probability of "success" (female birth).

Using counting rules to determine probabilities

$$
\begin{aligned}
& P(X=3)=\binom{4}{3} P(F)^{3} P(M)^{1} \\
& \\
& =\binom{4}{3} p^{3}(1-p)^{4-3}=6 p^{3}(1-p) \\
& P(X=0)
\end{aligned}=
$$

Using counting rules to determine probabilities

$$
\begin{aligned}
& P(X=3)=\binom{4}{3} P(F)^{3} P(M)^{1} \\
& =\binom{4}{3} p^{3}(1-p)^{4-3}=6 p^{3}(1-p) \\
& P(X=0)=\binom{4}{0} p^{0}(1-p)^{4-0}=(1-p)^{4} \\
& P(X=1)= \\
& P(X=2)= \\
& P(X=4)=
\end{aligned}
$$

Using counting rules to determine probabilities

$$
\begin{aligned}
& P(X=3)=\binom{4}{3} P(F)^{3} P(M)^{1} \\
& =\binom{4}{3} p^{3}(1-p)^{4-3}=6 p^{3}(1-p) \\
& P(X=0)=\binom{4}{0} p^{0}(1-p)^{4-0}=(1-p)^{4} \\
& P(X=1)=\binom{4}{1} p^{1}(1-p)^{4-1}=4 p(1-p)^{3} \\
& P(X=2)= \\
& P(X=4)=
\end{aligned}
$$

Using counting rules to determine probabilities

$$
\begin{aligned}
& P(X=3)=\binom{4}{3} P(F)^{3} P(M)^{1} \\
& \\
& =\binom{4}{3} p^{3}(1-p)^{4-3}=6 p^{3}(1-p) \\
& P(X=0)=\binom{4}{0} p^{0}(1-p)^{4-0}=(1-p)^{4} \\
& P(X=1)=\binom{4}{1} p^{1}(1-p)^{4-1}=4 p(1-p)^{3} \\
& P(X=2)=\binom{4}{2} p^{2}(1-p)^{4-2}=4 p^{2}(1-p)^{2} \\
& P(X=4)=
\end{aligned}
$$

Using counting rules to determine probabilities

$$
\begin{aligned}
& P(X=3)=\binom{4}{3} P(F)^{3} P(M)^{1} \\
& \\
& =\binom{4}{3} p^{3}(1-p)^{4-3}=6 p^{3}(1-p) \\
& P(X=0)=\binom{4}{0} p^{0}(1-p)^{4-0}=(1-p)^{4} \\
& P(X=1)=\binom{4}{1} p^{1}(1-p)^{4-1}=4 p(1-p)^{3} \\
& P(X=2)=\binom{4}{2} p^{2}(1-p)^{4-2}=4 p^{2}(1-p)^{2} \\
& P(X=4)=\binom{4}{4} p^{4}(1-p)^{4-4}=p^{4}
\end{aligned}
$$

Using counting rules to determine probabilities

Does this agree with our earlier work when $P(F)=p(M)=0.5$?

Then, $p=0.5$ and $(1-p)=0.5$.

$$
\begin{aligned}
P(X=0) & =(1-p)^{4} & =(0.5)^{4} & =1 / 16 \\
P(X=1) & =4 p(1-p)^{3} & =4(0.5)(0.5)^{3} & =4 / 16 \\
P(X=2) & =4 p^{2}(1-p)^{2} & =6(0.5)^{2}(0.5)^{2} & =6 / 16 \\
P(X=3) & =6 p^{3}(1-p) & =4(0.5)^{3}(0.5) & =4 / 16 \\
P(X=4) & =p^{4} & =(0.5)^{4} & =1 / 16
\end{aligned}
$$

Same probability distribution as before!
That's comforting.

Bernoulli and binomial probability distributions

A Bernoulli random variable models a very simple process.
For example, $Y=$ the number of females in one birth. Then,
$Y= \begin{cases}1 & \text { if child is female } \\ 0 & \text { if child is male }\end{cases}$
where $P(Y=1)=P(F)=p$, and $P(Y=0)=P(M)=1-p$.

We say that $Y \sim \operatorname{Bernoulli}(p)$,
or Y is a Bernoulli random variable with "success" probability p.

Bernoulli and binomial probability distributions

Let $Y=\#$ of "successes" in one Bernoulli (p) "trial"
Then $Y \sim \operatorname{Bernoulli}(p)$ and the pmf for Y is

$$
f(y)=
$$

Let $X=\#$ of "successes" in n independent Bernoulli (p) "trials"
Then, we say that $X \sim \operatorname{binom}(n, p)$,
or X is a binomial random variable with n independent trials and success probability p and the pmf for X is

$$
f(x)=
$$

Bernoulli and binomial probability distributions

Let $Y=\#$ of "successes" in one Bernoulli (p) "trial"
Then $Y \sim \operatorname{Bernoulli}(p)$ and the pmf for Y is

$$
f(y)=p^{y}(1-p)^{1-y} \quad \text { for } y=0,1
$$

Let $X=\#$ of "successes" in n independent Bernoulli (p) "trials"
Then, we say that $X \sim \operatorname{binom}(n, p)$,
or X is a binomial random variable with n independent trials and success probability p and the pmf for X is

$$
f(x)=
$$

Bernoulli and binomial probability distributions

Let $Y=\#$ of "successes" in one Bernoulli (p) "trial"
Then $Y \sim \operatorname{Bernoulli}(p)$ and the pmf for Y is

$$
f(y)=p^{y}(1-p)^{1-y} \quad \text { for } y=0,1
$$

Let $X=\#$ of "successes" in n independent Bernoulli (p) "trials"
Then, we say that $X \sim \operatorname{binom}(n, p)$,
or X is a binomial random variable with n independent trials and success probability p and the pmf for X is

$$
f(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad \text { for } x=0,1, \ldots, n
$$

The Binomial Expansion

The coefficients in the expansion match those in Pascal's Triangle:

$$
\begin{aligned}
& (w+y)^{1}=1 w^{1}+1 y^{1} \\
& (w+y)^{2}=1 w^{2}+2 w y+1 y^{2} \\
& (w+y)^{3}=1 w^{3}+3 w^{2} y+3 w^{1} y^{2}+1 y^{3} \\
& (w+y)^{4}=1 w^{4}+4 w^{3} y+6 w^{2} y^{2}+4 w y^{3}+1 y^{4} \\
& (w+y)^{5}=1 w^{5}+5 w^{4} y+10 w^{3} y^{2}+10 w^{2} y^{3}+5 w y^{4}+1 y^{5}
\end{aligned}
$$

The Binomial Expansion

In general,

$$
(w+y)^{n}=\underbrace{(w+y)(w+y) \ldots(w+y)}_{n \text { factors }}=\sum_{x=0}^{n}\binom{n}{x} w^{x} y^{n-x}
$$

General idea:

$$
w^{5} y^{3}=w w w w w y y y=w w w w y w y y=\cdots=y y y w w w w w
$$

The Binomial Expansion

In general,

$$
(w+y)^{n}=\underbrace{(w+y)(w+y) \ldots(w+y)}_{n \text { factors }}=\sum_{x=0}^{n}\binom{n}{x} w^{x} y^{n-x}
$$

General idea:
$w^{5} y^{3}=w w w w w y y y=w w w w y w y y=\cdots=y y y w w w w w$

This result guarantees that the binomial RV has a valid pmf.
To see this, let $w=p, y=(1-p)$. Then, $\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x}$
$=\sum_{x=0}^{n}\binom{n}{x} w^{x} y^{n-x}=(w+y)^{n}=(p+(1-p))^{n}=1^{n}=1$
The probabilities for any valid pmf must sum to 1 .

Multiple Random Variables, Same Sample Space

We can define several random variables on this same experiment (the same sample space):
$X=$ Number of female children
$Y=$ Number of male children before the first female child is born
$Z= \begin{cases}1 & \text { if more female children than male } \\ 0 & \text { otherwise }\end{cases}$

Outcome	X	Y	Z	Outcome	X	Y	Z	Outcome	X	Y	Z
FFFF	4	0	1	FFMM	2	0	0	FMMM	1	0	0
				FMFM	2	0	0	MFMM	1	1	0
FFFM	3	0	1	FMMF	2	0	0	MMFM	1	2	0
FFMF	3	0	1	MFMF	2	1	0	MMMF	1	3	0
FMFF	3	0	1	MFFM	2	1	0				
MFFF	3	1	1	MMFF	2	2	0	MMMM	0	4	0

Multiple pmfs, Same Sample Space

We can define several random variables and their corresponding pmfs on this same experiment (the same sample space):

Multiple pmfs, Same Sample Space

We can define several random variables and their corresponding pmfs on this same experiment (the same sample space):

Outcome	X	Y	Z	Outcome	X	Y	Z	Outcome	X	Y	Z
FFFF	4	0	1	FFMM	2	0	0	FMMM	1	0	0
FFFM	3	0	1	FMMF	2	0	0	MMFM	1	2	0
FFMF	3	0	1	MFMF	2	1	0	MMMF	1	3	0
FMFF	3	0	1	MFFM	2	1	0				
MFFF	3	1	1	MMFF	2	2	0	MMMM	0	4	0
x	0	1	2	3	4						
$f(x)$	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$						
y	0										
$f(y)$	$8 / 16$										
z											
$f(z)$											

Multiple pmfs, Same Sample Space

We can define several random variables and their corresponding pmfs on this same experiment (the same sample space):

Multiple pmfs, Same Sample Space

We can define several random variables and their corresponding pmfs on this same experiment (the same sample space):

Outcome	X	Y	Z	Outcome	X	Y	Z	Outcome	X	Y	Z
FFFF	4	0	1	FFMM	2	0	0	FMMM	1	0	0
				FMFM	2	0	0	MFMM	1	1	0
FFFM	3	0	1	FMMF	2	0	0	MMFM	1	2	0
FFMF	3	0	1	MFMF	2	1	0	MMMF	1	3	0
FMFF	3	0	1	MFFM	2	1	0				
MFFF	3	1	1	MMFF	2	2	0	MMMM	0	4	0

x	0	1	2	3	4
$f(x)$	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$

y	0	1	2	3	4
$f(y)$	$8 / 16$	$4 / 16$	$2 / 16$	$1 / 16$	$1 / 16$

z	
$f(z)$	

Multiple pmfs, Same Sample Space

We can define several random variables and their corresponding pmfs on this same experiment (the same sample space):

Outcome	, X	Y	Z	Out	me	x	Y	Z	Outcome	x	Y	Z
FFFF		0	1	FFMM		2	0	0	FMMM	1	0	0
				FMFM		2	0	0	MFMM	1	1	0
FFFM	3	0	1	FMMF		2	0	0	MMFM	1	2	0
FFMF	3	0	1	MFMF		2	1	0	MMMF	1	3	0
FMFF	3	0	1	MFFM		2	1	0				
MFFF	3	1	1	MMFF		2	2	0	MMMM	0	4	0
x	0	1		2	3		4					
$f(x)$	1/16	4/16		6/16	4/16		1/16					
y	0	1		2	3		4					
$f(y)$	8/16	4/16	2/16		1/16		1/16					
z	0											
$f(z)$	11/16											

Multiple pmfs, Same Sample Space

We can define several random variables and their corresponding pmfs on this same experiment (the same sample space):

Outcome	, X	$Y \quad Z$	Outcome		X	Y	Z	Outcome	x	Y	Z
FFFF	4	0	FFMM		2	0	0	FMMM	1	0	0
			FMFM			0	0	MFMM	1	1	0
FFFM	3	$0 \quad 1$	FMMF		2	0	0	MMFM	1	2	0
FFMF	3	$0 \quad 1$	MFMF		2	1	0	MMMF	1	3	0
FMFF	3	$0 \quad 1$	MFFM		2	1	0				
MFFF	3	11	MMFF		2	2	0	MMMM	0	4	0
x	0	1	2	3		4					
$f(x)$	1/16	4/16	6/16	4/16		1/16					
y	0	1	2	3		4					
$f(y)$	8/16	4/16	2/16	1/16	1/16						
z	0	1									
$f(z)$	11/16	5/16									

Probability Histograms

x	0	1	2	3	4
$f(x)$	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$

y	0	1	2	3	4
$f(y)$	$8 / 16$	$4 / 16$	$2 / 16$	$1 / 16$	$1 / 16$

z	0	1
$f(z)$	$11 / 16$	$5 / 16$

Recall: Mean

Mean (Expected Value)

Suppose X is a discrete random variable, then

$$
\begin{aligned}
\text { mean of } X & =E[X] \\
& =\sum_{\text {all } x} x P(X=x) \\
& =\sum_{\text {all } x} x f(x) \\
& =\mu
\end{aligned}
$$

Expected Value (Mean of a r.v.)

Find expected value (mean) of random variable Y.
$Y=\#$ of male children before the first female child is born

y	0	1	2	3	4
$f(y)$	$8 / 16$	$4 / 16$	$2 / 16$	$1 / 16$	$1 / 16$

$E(Y)=$
y

Expected Value (Mean of a r.v.)

Find expected value (mean) of random variable Y.
$Y=\#$ of male children before the first female child is born

y	0	1	2	3	4
$f(y)$	$8 / 16$	$4 / 16$	$2 / 16$	$1 / 16$	$1 / 16$

$E(Y)=\sum_{y=0}^{4} y f(y)$
y

Expected Value (Mean of a r.v.)

The random variable Z is a Bernoulli r.v.
$Z= \begin{cases}1 & \text { if more female children than male } \\ 0 & \text { otherwise }\end{cases}$

z	0	1
$f(z)$	$11 / 16$	$5 / 16$

Make a guess. Approximate the average outcome for Z.
$E(Z)=$

Expected Value (Mean of a r.v.)

The random variable Z is a Bernoulli r.v.
$Z= \begin{cases}1 & \text { if more female children than male } \\ 0 & \text { otherwise }\end{cases}$

z	0	1
$f(z)$	$11 / 16$	$5 / 16$

Make a guess. Approximate the average outcome for Z.
$E(Z)=\sum_{z=0}^{1} z f(z)=(0) 11 / 16+(1) 5 / 16=5 / 16$.

Expected Value of a Bernoulli Random Variable

The random variable Z is a Bernoulli r.v.
$Z= \begin{cases}1 & \text { if more female children than male }=\text { "success" } \\ 0 & \text { otherwise }=\text { "failure" }\end{cases}$
Probability mass function (PMF):

z	0	1
$f(z)$	$(1-p)$	p

$\mu_{Z}=E(Z)=$ weighted average of all possible outcomes x

$$
\begin{aligned}
E(Z) & =\sum_{\mathrm{all} z} z P(Z=z)=\sum_{z=0,1} z P(Z=z) \\
& =(0)(1-p)+(1)(p)=p=5 / 16
\end{aligned}
$$

Expected Value of a Bernoulli Random Variable

The random variable Z is a Bernoulli r.v.
$Z= \begin{cases}1 & \text { if more female children than male }=\text { "success" } \\ 0 & \text { otherwise }=\text { "failure" }\end{cases}$
Prob mass function (PMF): $\quad f(z)=p^{z}(1-p)^{1-z} \quad$ for $z=0,1$ where $p=5 / 16=$ probability of a success.
$\mu_{z}=E(Z)=$ weighted average of all possible outcomes x

$$
\begin{aligned}
E(Z) & =\sum_{\text {all } z} z f_{Z}(z)=\sum_{z=0}^{1} z p^{z}(1-p)^{1-z} \\
& =(0) p^{0}(1-p)^{1-0}+(1) p^{1}(1-p)^{1-1}=p=5 / 16 .
\end{aligned}
$$

The Binomial Setting

1. There is a fixed number of observations n.
2. The n observations are all independent.
3. Each observation falls into one of just two categories. For convenience, called "success" and "failure"
4. The probability of a success (p) is the same for each observation.

The Binomial Distribution

Let $X=$ the count of successes in a Binomial setting

Then, the following statements are equivalent:

- X has a Binomial distribution with parameters n and p.
- X is a $\operatorname{Binomial}(n, p)$ random variable.
- $X \sim \operatorname{Binomial}(n, p)$.
- X is the sum of n independent Bernoulli r.v. (${ }^{* * *}$)
- The probability mass function (pmf) for random variable X is

$$
f(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad \text { for } x=0,1, \ldots, n
$$

$n=$ number of observations (sample size)
$p=$ probability of success for any one observation

Expected Value of a Binomial Random Variable

Is X a $\operatorname{Binomial}(n, p)$ random variable?

Without studying, you plan to randomly guess each quiz question.
(1) $X=$ number of correct answers in a quiz with 10 questions and 5 choices per question ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$).
(2) $X=$ number of correct answers in a quiz with 100 questions and 4 choices per question ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$).
(3) $X=$ number of correct answers in a quiz with 50 questions and 4 choices per question ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$).

In each case, how many correct answers do you expect to get?

Let $X=\#$ of "successes" in n independent Bernoulli (p) "trials"

Expected Value of a Binomial Random Variable

Mean of Binomial RV

If X is a $\operatorname{Binomial}(n, p)$ random variable, $E(X)=n p$.

$$
\begin{aligned}
E(X) & =\sum_{\text {all } x} x f(x) \\
& =\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =n p
\end{aligned}
$$

We'll learn an easy way to prove this.

