Deriving the Binomial PMF

David Gerard Most slides borrowed from Linda Collins 2017-09-28

- Bernoulli Random Variables
- Binomial Random Variables
- Sections 3.3.1 and 3.4 of DBC

- Sometimes, if you are lucky, the pmf may be written as an equation in terms of the value of the random variable.
- For the coin flipping example, we will derive this formula.
- Useful beyond just coins: What is the probability of having 3 girls out of 4 children? I.e. many random variables *follow the same distribution*.

Since outcomes in the random flip are equally likely, we just counted the outcomes to determine event probabilities.

Let's generalize the counting process for this probability model.

We want a formula for the number of outcomes having k heads out of 4 flips.

We begin with a discussion of **permutations** and **combinations** ...also called **binomial coefficients**

Permutations:

How many ways to order a group of 4 people?

4 choices for 1st person \times (3 for 2nd) \times (2 for 3rd) \times (1 for 4th.)

How many ways to order a group of n people?

$$n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1 = n!$$

(Note: *n*! is pronounced "n factorial.")

Combinations

Combinations, also called Binomial Coefficients:

(Let n = 5 for the moment just for this one-slide example.)

How many ways to choose a committee of 2 from a group of 5?

 $\frac{5 \text{ choices for 1st committee member } \times 4 \text{ for 2nd}}{2! \text{ orderings of 2 person committee}}$ $= \frac{5 \cdot 4 \cdot (3 \cdot 2 \cdot 1)}{2! (3 \cdot 2 \cdot 1)} = \frac{5!}{2! 3!}$

How many ways to choose a committee of k from a group of n?

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Note: $\binom{n}{k}$ is pronounced "*n* choose *k*."

Counting outcomes for 4 flips of a coin:

How many outcomes with 2 heads out of 4 flips?

Each sequence has four flips: {First, Second, Third, Fourth}.

How many outcomes have two heads

That is, now many ways can we choose two locations from four: {First, Second, Third, Fourth}?

There are
$$\binom{n}{k} = \binom{4}{2}$$
 ways!

- We can verify this directly
- ННТТ, НТНТ, НТТН, ТННТ, ТНТН, ТТНН
- But this formula always works without having to directly count outcomes.

How many outcomes total?

2 choices for 1st \times (2 for 2nd) \times (2 for 3rd) \times (2 for 4th) = 2⁴ = 16.

Probability mass function for X:

$$f(x) = \mathbf{P}(X = x) = \frac{\text{\#outcomes w/ x heads}}{\text{\#outcomes in total}} = \frac{\binom{4}{x}}{2^4}.$$

So, the number of outcomes satisfying X = 2 is

$$\frac{4!}{2!\ 2!} = \frac{4!}{2!\ (4-2)!} = \binom{4}{2} = \text{ "4 choose 2"} = 6$$

= the number of ways to arrange 2 heads among 4 flips

$$S = \{HHHH, HHTH, HTHH, THHH, HHHT, HHTH, HTTH, THHH, THHH, THHH, THHH, THHT, HTTT, THTT, TTHT, TTTH, TTTTH, TTTTT, TTTT, TTT, TTTT, TTT, TTTT, TTT, TTTT, TTT, TT, TTT, TTT, TT, TT, TTT, TT, T$$

The number of ways to arrange x heads among 4 flips is $\begin{pmatrix} 4 \\ x \end{pmatrix}$.

How many outcomes have 3 Heads?

The number of ways to arrange x heads among 4 flips is
$$\begin{pmatrix} 4 \\ x \end{pmatrix}$$
.

How many outcomes have 3 Heads?

$$\binom{4}{3} = \frac{4!}{3! \ (4-3)!} = \frac{24}{6(1)} = 4.$$

Note that in real life, it's not quite true that the probability of having a boy P(M) is equal to the probability of having a girl P(F).

If $P(M) \neq P(F)$,

are all 4 outcomes with 3 females equally likely?

(FFFM, FFMF, FMFF, MFFF)

What is P(FMFF)?

What is P(FMFF)? $P(FMFF) = P(MFF | F) \times P(F)$

What is
$$P(FMFF)$$
?
 $P(FMFF) = P(MFF | F) \times P(F)$
 $= P(MFF) \times P(F)$ (*)

What is
$$P(FMFF)$$
?
 $P(FMFF) = P(MFF | F) \times P(F)$
 $= P(MFF) \times P(F)$ (*)
 $= [P(FF | M) \times P(M)] \times P(F)$

What is
$$P(FMFF)$$
?
 $P(FMFF) = P(MFF | F) \times P(F)$
 $= P(MFF) \times P(F)$ (*)
 $= [P(FF | M) \times P(M)] \times P(F)$
 $= P(FF) \times P(M) \times P(F)$ (*)

What is P(FMFF)? $P(FMFF) = P(MFF | F) \times P(F)$ $= P(MFF) \times P(F)$ (*) $= [P(FF | M) \times P(M)] \times P(F)$ $= P(FF) \times P(M) \times P(F)$ (*) $= [P(F | F) \times P(F)] \times P(M) \times P(F)$

What is P(FMFF)? $P(FMFF) = P(MFF | F) \times P(F)$ $= P(MFF) \times P(F)$ (*) $= [P(FF | M) \times P(M)] \times P(F)$ $= P(FF) \times P(M) \times P(F)$ (*) $= [P(F | F) \times P(F)] \times P(M) \times P(F)$ $= P(F) \times P(F) \times P(M) \times P(F)$ (*)

What is P(FMFF)? $P(FMFF) = P(MFF \mid F) \times P(F)$ $= P(MFF) \times P(F)$ (*) $= [P(FF \mid M) \times P(M)] \times P(F)$ $= P(FF) \times P(M) \times P(F)$ (*) $= [P(F | F) \times P(F)] \times P(M) \times P(F)$ $= P(F) \times P(F) \times P(M) \times P(F)$ (*) $= P(F)^3 \times P(M)$

What is P(FMFF)? $P(FMFF) = P(MFF \mid F) \times P(F)$ $= P(MFF) \times P(F)$ (*) $= [P(FF \mid M) \times P(M)] \times P(F)$ $= P(FF) \times P(M) \times P(F)$ (*) $= [P(F | F) \times P(F)] \times P(M) \times P(F)$ $= P(F) \times P(F) \times P(M) \times P(F)$ (*) $= P(F)^3 \times P(M)$

Finally,
$$P(X = 3) = \begin{pmatrix} 4 \\ 3 \end{pmatrix} P(F)^3 P(M)$$

So, even if genders are not equally likely,

we can find probabilities for X = 0, 1, 2, 3, and 4.

First, let
$$p = P(F)$$
 (0 < p < 1)

then P(M) = 1 - p,

where $0 \le p \le 1$ is the probability of "success" (female birth).

$$P(X = 3) = {\binom{4}{3}} P(F)^3 P(M)^1$$
$$= {\binom{4}{3}} p^3 (1-p)^{4-3} = 6 p^3 (1-p)$$

$$P(X = 0) =$$

$$P(X = 1) =$$

$$P(X = 2) =$$

$$P(X = 4) =$$

$$P(X = 3) = {4 \choose 3} P(F)^3 P(M)^1$$

= ${4 \choose 3} p^3 (1-p)^{4-3} = 6 p^3 (1-p)^4$
$$P(X = 0) = {4 \choose 0} p^0 (1-p)^{4-0} = (1-p)^4$$

P(X = 1) =

$$P(X = 2) =$$

$$P(X = 4) =$$

$$P(X = 3) = \binom{4}{3} P(F)^3 P(M)^1$$

= $\binom{4}{3} p^3 (1-p)^{4-3} = 6 p^3 (1-p)$
$$P(X = 0) = \binom{4}{0} p^0 (1-p)^{4-0} = (1-p)^4$$

$$P(X = 1) = \binom{4}{1} p^1 (1-p)^{4-1} = 4 p (1-p)^3$$

$$P(X = 2) =$$

$$P(X = 4) =$$

$$P(X = 3) = \binom{4}{3} P(F)^3 P(M)^1$$

= $\binom{4}{3} p^3 (1-p)^{4-3} = 6 p^3 (1-p)$
$$P(X = 0) = \binom{4}{0} p^0 (1-p)^{4-0} = (1-p)^4$$

$$P(X = 1) = \binom{4}{1} p^1 (1-p)^{4-1} = 4 p (1-p)^3$$

$$P(X = 2) = \binom{4}{2} p^2 (1-p)^{4-2} = 4 p^2 (1-p)^2$$

P(X = 4) =

$$P(X = 3) = \binom{4}{3} P(F)^3 P(M)^1$$

= $\binom{4}{3} p^3 (1-p)^{4-3} = 6 p^3 (1-p)$
$$P(X = 0) = \binom{4}{0} p^0 (1-p)^{4-0} = (1-p)^4$$

$$P(X = 1) = \binom{4}{1} p^1 (1-p)^{4-1} = 4 p (1-p)^3$$

$$P(X = 2) = \binom{4}{2} p^2 (1-p)^{4-2} = 4 p^2 (1-p)^2$$

$$P(X = 4) = \binom{4}{4} p^4 (1-p)^{4-4} = p^4$$

Does this agree with our earlier work when P(F) = p(M) = 0.5?

Then, p = 0.5 and (1 - p) = 0.5.

$$P(X = 0) = (1 - p)^{4} = (0.5)^{4} = 1/16$$

$$P(X = 1) = 4 p (1 - p)^{3} = 4 (0.5) (0.5)^{3} = 4/16$$

$$P(X = 2) = 4 p^{2} (1 - p)^{2} = 6 (0.5)^{2} (0.5)^{2} = 6/16$$

$$P(X = 3) = 6 p^{3} (1 - p) = 4 (0.5)^{3} (0.5) = 4/16$$

$$P(X = 4) = p^{4} = (0.5)^{4} = 1/16$$

Same probability distribution as before! That's comforting.

A Bernoulli random variable models a very simple process. For example, Y = the number of females in one birth. Then,

$$Y = \begin{cases} 1 & \text{if child is female} \\ 0 & \text{if child is male} \end{cases}$$

where P(Y = 1) = P(F) = p, and P(Y = 0) = P(M) = 1 - p.

We say that $Y \sim \text{Bernoulli}(p)$,

or Y is a Bernoulli random variable with "success" probability p.

Bernoulli and binomial probability distributions

Let Y = # of "successes" in one Bernoulli (p) "trial" Then $Y \sim \text{Bernoulli}(p)$ and the pmf for Y is

$$f(y) =$$

Let X = # of "successes" in *n* independent Bernoulli (*p*) "trials"

Then, we say that $X \sim \text{binom}(n, p)$, or X is a binomial random variable with *n* **independent** trials and success probability *p* and the pmf for X is

$$f(x) =$$

Bernoulli and binomial probability distributions

Let Y = # of "successes" in one Bernoulli (p) "trial" Then $Y \sim \text{Bernoulli}(p)$ and the pmf for Y is

$$f(y) = p^{y} (1-p)^{1-y}$$
 for $y = 0, 1$

Let X = # of "successes" in *n* independent Bernoulli (*p*) "trials"

Then, we say that $X \sim \text{binom}(n, p)$, or X is a binomial random variable with *n* **independent** trials and success probability *p* and the pmf for X is

$$f(x) =$$

Bernoulli and binomial probability distributions

Let Y = # of "successes" in one Bernoulli (p) "trial" Then $Y \sim \text{Bernoulli}(p)$ and the pmf for Y is

$$f(y) = p^{y} (1-p)^{1-y}$$
 for $y = 0, 1$

Let X = # of "successes" in *n* independent Bernoulli (*p*) "trials"

Then, we say that $X \sim \text{binom}(n, p)$, or X is a binomial random variable with *n* **independent** trials and success probability *p* and the pmf for X is

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$
 for $x = 0, 1, ..., n$

The Binomial Expansion

The coefficients in the expansion match those in Pascal's Triangle:

The Binomial Expansion

In general,

$$(w+y)^{n} = \underbrace{(w+y)(w+y)\dots(w+y)}_{n \text{ factors}} = \sum_{x=0}^{n} \binom{n}{x} w^{x} y^{n-x}$$

General idea:

 $w^5y^3 = wwwwyyy = wwwwywyy = \cdots = yyywwwww$

The Binomial Expansion

In general,

$$(w+y)^n = \underbrace{(w+y)(w+y)\dots(w+y)}_{n \text{ factors}} = \sum_{x=0}^n \binom{n}{x} w^x y^{n-x}$$

General idea: $w^5y^3 = wwwwyyy = wwwwywyy = \cdots = yyywwwww$

This result guarantees that the binomial RV has a valid pmf.

To see this, let
$$w = p, y = (1 - p)$$
. Then, $\sum_{x=0}^{n} {n \choose x} p^{x} (1 - p)^{n-x}$
= $\sum_{x=0}^{n} {n \choose x} w^{x} y^{n-x} = (w + y)^{n} = (p + (1 - p))^{n} = 1^{n} = 1$

The probabilities for any valid pmf must sum to 1.

20

Multiple Random Variables, Same Sample Space

We can define several random variables on this same experiment (the same sample space):

X = Number of female children

Y = Number of male children before the first female child is born

$$Z = \begin{cases} 1 & \text{if more female children than male} \\ 0 & \text{otherwise} \end{cases}$$

Outcome	X	Y	Ζ	Outcome	X	Y	Ζ	Outcome	X	Y	Ζ
FFFF	4	0	1	FFMM	2	0	0	FMMM	1	0	0
				FMFM	2	0	0	MFMM	1	1	0
FFFM	3	0	1	FMMF	2	0	0	MMFM	1	2	0
FFMF	3	0	1	MFMF	2	1	0	MMMF	1	3	0
FMFF	3	0	1	MFFM	2	1	0				
MFFF	3	1	1	MMFF	2	2	0	MMMM	0	4	0

Outcome	X	Y	Ζ	Outo	ome	X	Y	Ζ	Outcome	X	Y	Ζ
FFFF	4	0	1	FFN	FFMM		0	0	FMMM	1	0	0
				FM	FM	2	0	0	MFMM	1	1	0
FFFM	3	0	1	FM	MF	2	0	0	MMFM	1	2	0
FFMF	3	0	1	MF	MF	2	1	0	MMMF	1	3	0
FMFF	3	0	1	MF	MFFM		1	0				
MFFF	3	1	1	MM	1FF	2	2	0	мммм	0	4	0
	1											
x	0	1		2	2 3		4					
f(x) = 1	/16	4/1	56	5/16	/16 4/16		1/16	_				
I												
y												
f(y)								_				
z												
f(z)												

f(z)

Outcome	X	Y	Ζ	Outo	Outcome		Y	Ζ	Outcome	X	Y	Ζ
FFFF	4	0	1	FFN	FFMM		0	0	FMMM	1	0	0
				FM	FMFM		0	0	MFMM	1	1	0
FFFM	3	0	1	FM	FMMF		0	0	MMFM	1	2	0
FFMF	3	0	1	MF	MF	2	1	0	MMMF	1	3	0
FMFF	3	0	1	MF	FM	2	1	0				
MFFF	3	1	1	MM	1FF	2	2	0	мммм	0	4	0
	1			I					I	I		
x ()	1		2	2 3		4					
f(x) = 1/	16	4/16	5 6	5/16	4/1	6	1/16	_				
		/		/	/		/ -					
	`											
<u> </u>								_				
$f(y) \mid 8/$	16											
'												
z												
2												

Outco	me	X	Y	Ζ	Outc	ome	X	Y	Ζ	Outcome	X	Y	Ζ
FFF	F	4	0	1	FFN	FFMM		0	0	FMMM	1	0	0
					FMI	FMFM		0	0	MFMM	1	1	0
FFFN	M	3	0	1	FMI	FMMF		0	0	MMFM	1	2	0
FFM	F	3	0	1	MFI	MF	2	1	0	MMMF	1	3	0
FMF	F	3	0	1	MFI	MFFM		1	0				
MFF	F	3	1	1	MM	MMFF		2	0	MMMM	0	4	0
					I					1 1			
x	0)	1		2	3		4					
f(x)	1/:	16	4/16	6	5/16	4/1	6	1/16	-				
y	C)	1										
f(y)	8/3	16	4/16						_				
z													
f(z)													

Outcom	ne	Х	Y	Ζ	Outc	ome	X	Y	Ζ	Outcome	X	Y	Ζ
FFFF		4	0	1	FFN	FFMM		0	0	FMMM	1	0	0
					FM	FMFM		0	0	MFMM	1	1	0
FFFM	1	3	0	1	FM	FMMF		0	0	MMFM	1	2	0
FFMF	:	3	0	1	MF	MF	2	1	0	MMMF	1	3	0
FMFF	:	3	0	1	MF	FM	2	1	0				
MFFF	:	3	1	1	MN	IFF	2	2	0	мммм	0	4	0
					1					I	1		
x	0		1		2	3		4					
f(x)	1/1	6	4/16	5 6	6/16	4/1	6	1/16	_				
	/		/		/	/		/					
	0		1		2	3		4					
у	-		T			3		4	_				
f(y)	8/1	16	4/16	5 2	2/16	1/1	6	1/16					
I													
z													

Outcom	e X	(Y	′ Z	. (Outc	ome	X	Y	Ζ	Outcome	X	Y	Ζ
FFFF	4	- 0) 1		FFMM		2	0	0	FMMM	1	0	0
					FMFM		2	0	0	MFMM	1	1	0
FFFM	3	0) 1		FMMF		2	0	0	MMFM	1	2	0
FFMF	3	0) 1		MF	MF	2	1	0	MMMF	1	3	0
FMFF	3	0) 1		MFI	FM	2	1	0				
MFFF	3	1	. 1		MM	IFF	2	2	0	мммм	0	4	0
							1						
x	0		1	2	2	3		4					
f(x)	/16	4/	16	6/	16	4/1	6	1/16	_				
	,	,		,		,		,					
y	0		1	2)	3		4					
	-					-	6		_				
$f(y) \mid \delta$	8/16	4/	16	2/	10	1/1	0	1/16					
z	0												
f(z) 1	.1/16	ĵ		_									

Outco	ome	X	Y	Ζ	Outc	ome	X	Y	Ζ	Outcome	X	Y	Ζ
FFF	F	4	0	1	FFN	ЛМ	2	0	0	FMMM	1	0	0
					FMI	FM	2	0	0	MFMM	1	1	0
FFF	м	3	0	1	FMI	FMMF		0	0	MMFM	1	2	0
FFM	1F	3	0	1	MFI	MF	2	1	0	MMMF	1	3	0
FMF	F	3	0	1	MFI	FM	2	1	0				
MFF	F	3	1	1	MM	IFF	2	2	0	MMMM	0	4	0
										1 1			
X	0)	1		2	3		4					
f(x)	1/:	16	4/16	(5/16	4/1	6	1/16	_				
у	0)	1		2	3		4					
f(y)	8/3	16	4/16	4	2/16	1/1	6	1/16	_				
Ζ	(C	1										
f(z)	11	/16	5/1	6									

Probability Histograms

Mean (Expected Value)

Suppose X is a discrete random variable, then

mean of
$$X = E[X]$$

= $\sum_{\text{all } x} xP(X = x)$
= $\sum_{\text{all } x} xf(x)$
= μ

Find expected value (mean) of random variable Y.

Y = # of male children before the first female child is born

E(Y) =

Find expected value (mean) of random variable Y.

Y=# of male children before the first female child is born

E(Z) =

The random variable Z is a Bernoulli r.v. $Z = \begin{cases} 1 & \text{if more female children than male} \\ 0 & \text{otherwise} \end{cases}$ f(z)=probability 0.0 0.4 0 1 2 3 4 7 Make a guess. Approximate the average outcome for Z. $E(Z) = \sum_{z=0}^{\infty} zf(z) = (0)11/16 + (1)5/16 = 5/16.$

The random variable Z is a Bernoulli r.v.

$$Z = \begin{cases} 1 & \text{if more female children than male} = \text{"success"} \\ 0 & \text{otherwise} = \text{"failure"} \end{cases}$$

Probability mass function (PMF):

$$\begin{array}{c|cc} z & 0 & 1 \\ \hline f(z) & (1-p) & p \end{array}$$

where p = 5/16 = probability of a success.

 $\mu_Z = E(Z) =$ weighted average of all possible outcomes x

$$E(Z) = \sum_{\text{all } z} z P(Z = z) = \sum_{z=0,1} z P(Z = z)$$
$$= (0)(1-p) + (1)(p) = p = 5/16.$$

The random variable Z is a Bernoulli r.v.

$$Z = \begin{cases} 1 & \text{if more female children than male} = \text{``success''} \\ 0 & \text{otherwise} = \text{``failure''} \end{cases}$$

Prob mass function (PMF): $f(z) = p^{z} (1-p)^{1-z}$ for z = 0, 1

where p = 5/16 = probability of a success.

 $\mu_Z = E(Z) =$ weighted average of all possible outcomes x

$$E(Z) = \sum_{\text{all } z} z f_Z(z) = \sum_{z=0}^1 z p^z (1-p)^{1-z}$$
$$= (0)p^0(1-p)^{1-0} + (1)p^1(1-p)^{1-1} = p = 5/16.$$

- 1. There is a fixed number of observations n.
- 2. The *n* observations are all independent.
- 3. Each observation falls into one of just two categories. For convenience, called "success" and "failure"
- The probability of a success (p) is the same for each observation.

Let X = the count of successes in a Binomial setting

Then, the following statements are equivalent:

- X has a Binomial distribution with parameters n and p.
- X is a Binomial(n, p) random variable.
- $X \sim \text{Binomial}(n, p)$.
- X is the sum of n independent Bernoulli r.v. (***)
- The probability mass function (pmf) for random variable X is

$$f(x) = {n \choose x} p^{x} (1-p)^{n-x}$$
 for $x = 0, 1, ..., n$

- n = number of observations (sample size)
- p = probability of success for any one observation

Is X a Binomial(n, p) random variable?

Without studying, you plan to randomly guess each quiz question.

- (1) X = number of correct answers in a quiz with 10 questions and 5 choices per question (A, B, C, D, E).
- (2) X = number of correct answers in a quiz with 100 questions and 4 choices per question (A, B, C, D).
- (3) X = number of correct answers in a quiz with 50 questions and 4 choices per question (A, B, C, D).

In each case, how many correct answers do you expect to get?

Let
$$X = \#$$
 of "successes" in *n* independent Bernoulli (*p*) "trials" 3

Mean of Binomial RV

If X is a Binomial(n, p) random variable, E(X) = np.

$$E(X) = \sum_{\text{all } x} x f(x)$$
$$= \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x}$$
$$= np$$

We'll learn an easy way to prove this.