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Learning Objectives

• Bernoulli Random Variables

• Binomial Random Variables

• Sections 3.3.1 and 3.4 of DBC
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A formula

• Sometimes, if you are lucky, the pmf may be written as an

equation in terms of the value of the random variable.

• For the coin flipping example, we will derive this formula.

• Useful beyond just coins: What is the probabiliy of having 3

girls out of 4 children? I.e. many random variables follow the

same distribution.
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Using counting rules to determine probabilities i

Since outcomes in the random flip are equally likely, we just

counted the outcomes to determine event probabilities.

Let’s generalize the counting process for this probability model.

We want a formula for the number of outcomes

having k heads out of 4 flips.

We begin with a discussion of

permutations and

combinations . . . also called binomial coefficients
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Permutations

Permutations:

How many ways to order a group of 4 people?

4 choices for 1st person × (3 for 2nd )× (2 for 3rd )× (1 for 4th.)

How many ways to order a group of n people?

n × (n − 1)× (n − 2)× · · · × 2× 1 = n!

(Note: n! is pronounced “n factorial.”)
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Combinations

Combinations, also called Binomial Coefficients:

(Let n = 5 for the moment just for this one-slide example.)

How many ways to choose a committee of 2 from a group of 5?

5 choices for 1st committee member × 4 for 2nd

2! orderings of 2 person committee

=
5 · 4 · (3 · 2 · 1)

2! (3 · 2 · 1)
=

5!

2! 3!

How many ways to choose a committee of k from a group of n?(
n

k

)
=

n!

k! (n − k)!

Note:
(n
k

)
is pronounced “n choose k .”
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Counting outcomes

Counting outcomes for 4 flips of a coin:

How many outcomes with 2 heads out of 4 flips?

Each sequence has four flips: {First, Second,Third,Fourth}.

How many outcomes have two heads

That is, now many ways can we choose two locations from four:

{First,Second,Third,Fourth}?

There are

(
n

k

)
=

(
4

2

)
ways!
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Verify

• We can verify this directly

• HHTT, HTHT, HTTH, THHT, THTH, TTHH

• But this formula always works without having to directly

count outcomes.
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pmf

How many outcomes total?

2 choices for 1st ×(2 for 2nd )×(2 for 3rd )×(2 for 4th ) = 24 = 16.

Probability mass function for X :

f (x) = P(X = x) =
#outcomes w/ x heads

#outcomes in total
=

(
4

x

)
24

.
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Using counting rules to determine probabilities

So, the number of outcomes satisfying X = 2 is

4!

2! 2!
=

4!

2! (4− 2)!
=

(
4

2

)
= “4 choose 2”

= 6

= the number of ways to arrange 2 heads among 4 flips

S =
{
HHHH,

HHHT ,HHTH,HTHH,THHH,

HHTT ,HTHT ,HTTH,THTH,TTHH,THHT ,

HTTT ,THTT ,TTHT ,TTTH,

TTTT
}
.
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Using counting rules to determine probabilities

The number of ways to arrange x heads among 4 flips is

(
4

x

)
.

How many outcomes have 3 Heads?

(
4

3

)
=

4!

3! (4− 3)!
=

24

6(1)
= 4.
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Using counting rules to determine probabilities

Note that in real life, it’s not quite true that the probability of

having a boy P(M) is equal to the probability of having a girl

P(F ).

If P(M) 6= P(F ),

are all 4 outcomes with 3 females equally likely?

(FFFM,FFMF ,FMFF ,MFFF )

What is P(FMFF )?
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Using counting rules to determine probabilities

What is P(FMFF )?

P(FMFF ) = P(MFF | F )× P(F )

= P(MFF )× P(F ) (∗)
= [P(FF | M)× P(M)]× P(F )

= P(FF )× P(M)× P(F ) (∗)
= [P(F | F )× P(F )]× P(M)× P(F )

= P(F )× P(F )× P(M)× P(F ) (∗)
= P(F )3 × P(M)

(∗) by independence of gender by birth order

Finally, P(X = 3) =

(
4

3

)
P(F )3 P(M)
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Using counting rules to determine probabilities

So, even if genders are not equally likely,

we can find probabilities for X = 0, 1, 2, 3, and 4.

First, let p = P(F ) (0 < p < 1)

then P(M) = 1− p,

where 0 ≤ p ≤ 1 is the probability of “success” (female birth).
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Using counting rules to determine probabilities

P(X = 3) =

(
4

3

)
P(F )3 P(M)1

=

(
4

3

)
p3 (1− p)4−3 = 6 p3 (1− p)

P(X = 0) =

(
4

0

)
p0 (1− p)4−0 = (1− p)4

P(X = 1) =

(
4

1

)
p1 (1− p)4−1 = 4 p (1− p)3

P(X = 2) =

(
4

2

)
p2 (1− p)4−2 = 4 p2 (1− p)2

P(X = 4) =

(
4

4

)
p4 (1− p)4−4 = p4
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Using counting rules to determine probabilities

Does this agree with our earlier work when P(F ) = p(M) = 0.5?

Then, p = 0.5 and (1− p) = 0.5.

P(X = 0) = (1− p)4 = (0.5)4 = 1/16

P(X = 1) = 4 p (1− p)3 = 4 (0.5) (0.5)3 = 4/16

P(X = 2) = 4 p2 (1− p)2 = 6 (0.5)2 (0.5)2 = 6/16

P(X = 3) = 6 p3 (1− p) = 4 (0.5)3 (0.5) = 4/16

P(X = 4) = p4 = (0.5)4 = 1/16

Same probability distribution as before! That’s comforting.
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Bernoulli and binomial probability distributions

A Bernoulli random variable models a very simple process.

For example, Y = the number of females in one birth. Then,

Y =

1 if child is female

0 if child is male

where P(Y = 1) = P(F ) = p, and P(Y = 0) = P(M) = 1− p.

We say that Y ∼ Bernoulli(p),

or Y is a Bernoulli random variable with “success” probability p.
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Bernoulli and binomial probability distributions

Let Y = # of “successes” in one Bernoulli (p) “trial”

Then Y ∼ Bernoulli(p) and the pmf for Y is

f (y) =

py (1− p)1−y for y = 0, 1

Let X = # of “successes” in n independent Bernoulli (p) “trials”

Then, we say that X ∼ binom(n, p),

or X is a binomial random variable with n independent trials and

success probability p and the pmf for X is

f (x) =

(
n

x

)
px (1− p)n−x for x = 0, 1, ..., n
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The Binomial Expansion

The coefficients in the expansion match those in Pascal’s Triangle:

(w + y)1 = 1w1 + 1y1

(w + y)2 = 1w2 + 2wy + 1y2

(w + y)3 = 1w3 + 3w2y + 3w1y2 + 1y3

(w + y)4 = 1w4 + 4w3y + 6w2y2 + 4wy3 + 1y4

(w + y)5 = 1w5 + 5w4y + 10w3y2 + 10w2y3 + 5wy4 + 1y5(0
0

)(1
0

) (1
1

)(2
0

) (2
1

) (2
2

)(3
0

) (3
1

) (3
2

) (3
3

)(4
0

) (4
1

) (4
2

) (4
3

) (4
0

)(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)
...

=

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

...
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The Binomial Expansion

In general,

(w + y)n = (w + y)(w + y) . . . (w + y)︸ ︷︷ ︸
n factors

=
n∑

x=0

(
n

x

)
w xyn−x

General idea:

w5y3 = wwwwwyyy = wwwwywyy = · · · = yyywwwww

This result guarantees that the binomial RV has a valid pmf.

To see this, let w = p, y = (1− p). Then,
n∑

x=0

(
n

x

)
px(1− p)n−x

=
n∑

x=0

(
n

x

)
w xyn−x = (w + y)n = (p + (1− p))n = 1n = 1

The probabilities for any valid pmf must sum to 1.
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Multiple Random Variables, Same Sample Space

We can define several random variables on this same experiment

(the same sample space):

X = Number of female children

Y = Number of male children before the first female child is born

Z =

1 if more female children than male

0 otherwise

Outcome X Y Z Outcome X Y Z Outcome X Y Z

FFFF 4 0 1 FFMM 2 0 0 FMMM 1 0 0

FMFM 2 0 0 MFMM 1 1 0

FFFM 3 0 1 FMMF 2 0 0 MMFM 1 2 0

FFMF 3 0 1 MFMF 2 1 0 MMMF 1 3 0

FMFF 3 0 1 MFFM 2 1 0

MFFF 3 1 1 MMFF 2 2 0 MMMM 0 4 0
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Multiple pmfs, Same Sample Space

We can define several random variables and their corresponding
pmfs on this same experiment (the same sample space):

Outcome X Y Z Outcome X Y Z Outcome X Y Z

FFFF 4 0 1 FFMM 2 0 0 FMMM 1 0 0

FMFM 2 0 0 MFMM 1 1 0

FFFM 3 0 1 FMMF 2 0 0 MMFM 1 2 0

FFMF 3 0 1 MFMF 2 1 0 MMMF 1 3 0

FMFF 3 0 1 MFFM 2 1 0

MFFF 3 1 1 MMFF 2 2 0 MMMM 0 4 0

x 0 1 2 3 4

f (x) 1/16 4/16 6/16 4/16 1/16

y

0 1 2 3 4

f (y)

8/16 4/16 2/16 1/16 1/16

z

0 1

f (z)

11/16 5/16
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Probability Histograms
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Recall: Mean

Mean (Expected Value)

Suppose X is a discrete random variable, then

mean of X = E [X ]

=
∑
all x

xP(X = x)

=
∑
all x

xf (x)

= µ

24



Expected Value (Mean of a r.v.)

Find expected value (mean) of random variable Y .

Y = # of male children before the first female child is born

y 0 1 2 3 4

f (y) 8/16 4/16 2/16 1/16 1/16

0 1 2 3 4

y

f(
y)

=
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

E (Y ) =

4∑
y=0

yf (y)

=

(0)8/16 + (1)4/16 + (2)2/16 + (3)1/16 + (4)1/1 = 15/16
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4∑

y=0

yf (y)

= (0)8/16 + (1)4/16 + (2)2/16 + (3)1/16 + (4)1/1 = 15/16
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Expected Value (Mean of a r.v.)

The random variable Z is a Bernoulli r.v.

Z =

1 if more female children than male

0 otherwise

z 0 1

f (z) 11/16 5/16

0 1 2 3 4

z

f(
z)

=
pr

ob
ab

ili
ty

0.
0

0.
4

Make a guess. Approximate the average outcome for Z .

E (Z ) =

1∑
z=0

zf (z) = (0)11/16 + (1)5/16 = 5/16.
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Expected Value of a Bernoulli Random Variable

The random variable Z is a Bernoulli r.v.

Z =

1 if more female children than male = “success”

0 otherwise = “failure”

Probability mass function (PMF):
z 0 1

f (z) (1− p) p

where p = 5/16 = probability of a success.

µZ = E (Z ) = weighted average of all possible outcomes x

E (Z ) =
∑
all z

z P(Z = z) =
∑
z=0,1

z P(Z = z)

= (0)(1− p) + (1)(p) = p = 5/16.
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Expected Value of a Bernoulli Random Variable

The random variable Z is a Bernoulli r.v.

Z =

1 if more female children than male = “success”

0 otherwise = “failure”

Prob mass function (PMF): f (z) = pz (1− p)1−z for z = 0, 1

where p = 5/16 = probability of a success.

µZ = E (Z ) = weighted average of all possible outcomes x

E (Z ) =
∑
all z

z fZ (z) =
1∑

z=0

z pz (1− p)1−z

= (0)p0(1− p)1−0 + (1)p1(1− p)1−1 = p = 5/16.
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The Binomial Setting

1. There is a fixed number of observations n.

2. The n observations are all independent.

3. Each observation falls into one of just two categories.

For convenience, called “success” and “failure”

4. The probability of a success (p)

is the same for each observation.
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The Binomial Distribution

Let X = the count of successes in a Binomial setting

Then, the following statements are equivalent:

• X has a Binomial distribution with parameters n and p.

• X is a Binomial(n, p) random variable.

• X ∼ Binomial(n, p).

• X is the sum of n independent Bernoulli r.v. (***)

• The probability mass function (pmf) for random variable X is

f (x) =

(
n

x

)
px (1− p)n−x for x = 0, 1, ..., n

n = number of observations (sample size)

p = probability of success for any one observation
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Expected Value of a Binomial Random Variable

Is X a Binomial(n, p) random variable?

Without studying, you plan to randomly guess each quiz question.

(1) X = number of correct answers in a quiz with 10 questions

and 5 choices per question (A, B, C, D, E).

(2) X = number of correct answers in a quiz with 100 questions

and 4 choices per question (A, B, C, D).

(3) X = number of correct answers in a quiz with 50 questions

and 4 choices per question (A, B, C, D).

In each case, how many correct answers do you expect to get?

Let X = # of “successes” in n independent Bernoulli (p) “trials”

Is X Binomial(n, p)? What is E (X )?
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Expected Value of a Binomial Random Variable

Mean of Binomial RV

If X is a Binomial(n, p) random variable, E (X ) = np.

E (X ) =
∑
all x

x f (x)

=
n∑

x=0

x

(
n

x

)
px (1− p)n−x

= np

We’ll learn an easy way to prove this.
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