Multiple Random Variables

David Gerard
2017-09-28

Learning Objectives

- Joint/conditional/marginal distributions of random variables.
- Independence of random variables.
- Covariance of random variables.
- Mean and variance of sum of random variables.

Motivating Example

- Consider experiment of tossing two fair dice.
- Sample space $=S=\{(1,1),(1,2),(1,3), \ldots,(5,6),(6,6)\}$.
- $P(z)=1 / 36$ for all $z \in S$.
- Let $X=$ sum of the two dice.
- Let $Y=\mid$ difference of the two dice|.
- For each of the 36 outcomes in the sample space, we have corresponding values of X and Y.
- We can write out the joint distribution probability mass function of X and Y.

joint pmf

joint pmf

Let X and Y be two discrete bivariate random variables. Then the function $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $P(X=x$ and $Y=y)$ is called the joint probability mass function of X and Y.

Dice Example

$f(x, y)$							x					
		2	3	4	5	6	7	8	9	10	11	12
	0			$\frac{1}{36}$								
	1		$\frac{1}{18}$									
y	2			$\frac{1}{18}$		$\frac{1}{18}$		$\frac{1}{18}$		$\frac{1}{18}$		
	3				$\frac{1}{18}$		$\frac{1}{18}$		$\frac{1}{18}$			
	4					$\frac{1}{18}$		$\frac{1}{18}$				
	5						$\frac{1}{18}$					

$f(x, y)=0$ for all other (x, y).
E.g.

$$
\begin{aligned}
f(3,1) & =P(X=3, Y=1)=P(\{(2,1),(1,2)\}) \\
& =P((2,1))+P((1,2))(\text { disjoint events }) \\
& =\frac{1}{36}+\frac{1}{36}=\frac{1}{18} .
\end{aligned}
$$

Property of joint pmf

Some properties readily generalize to the multiple variable case:

- $\sum_{x} \sum_{y} f(x, y)=1$
- $0 \leq f(x, y) \leq 1$ for all (x, y).

Marginal Distributions

From the joint pmf, we can find the pmf of just X and the pmf of just Y.

To find the pmf of X at a particular x, we find every pair (x, y) and add up their joint probabilities.

$$
f_{X}(x)=\sum_{y} f(x, y)=\sum_{y} P(X=x \text { and } Y=y)
$$

Similarly

$$
f_{Y}(y)=\sum_{x} f(x, y)=\sum_{x} P(X=x \text { and } Y=y) .
$$

Even though f_{X} and f_{Y} are just the pmf's of X and Y, we call them marginal pmfs when in the context of multiple variables.

Dice Example

$$
\begin{aligned}
P(X=6) & =f_{x}(6)=f(6,0)+f(6,3)+f(6,4) \\
& =1 / 36+1 / 18+1 / 18=5 / 36
\end{aligned}
$$

Dice Example

$$
\begin{aligned}
P(Y=2) & =f_{y}(2)=f(4,2)+f(6,2)+f(8,2)+f(10,2) \\
& =1 / 18+1 / 18+1 / 18+1 / 18=4 / 36
\end{aligned}
$$

Conditional Distribution

Conditional pmf

Let X and Y be discrete random variables. For any x such that $P(X=x)=f_{X}(x)>0$, the conditional pmf of Y given $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{P(X=x \text { and } Y=y)}{P(X=x)}=\frac{f(x, y)}{f_{X}(x)}
$$

Similarly

$$
f_{X \mid Y}(x \mid y)=\frac{P(X=x \text { and } Y=y)}{P(Y=y)}=\frac{f(x, y)}{f_{Y}(y)}
$$

Dice Example i: $f(x \mid y=2)$

$f(x, y)$	x											
		2	3	4	5	6	7	8	9	10	11	12
	0	$\frac{1}{36}$		$\frac{1}{36}$								
	1		$\frac{1}{18}$									
y	2			$\frac{1}{18}$		$\frac{1}{18}$		$\frac{1}{18}$		$\frac{1}{18}$		
	3				$\frac{1}{18}$		$\frac{1}{18}$		$\frac{1}{18}$			
	4					$\frac{1}{18}$		$\frac{1}{18}$				
	5						$\frac{1}{18}$					

Dice Example ii: $f(x \mid y=2)$

$f(x, y)$				x								
		2	3	4	5	6	7	8	9	10	11	12
	0											
	1											
y	2		$\frac{1}{18}$		$\frac{1}{18}$		$\frac{1}{18}$	$\frac{1}{18}$				
	3											
	4											
	5											

Intuition: Normalize selected row to sum to 1 so that they are probabilities.

Dice Example if: $f(x \mid y=2)$

So

$$
f_{X \mid Y}(x \mid y=2)= \begin{cases}\frac{1}{4} & \text { if } x \in\{4,6,8,10\} \\ 0 & \text { otherwise }\end{cases}
$$

Independence

independence

Two random variables X and Y are independent if for every $x \in \mathbb{R}$ and $y \in \mathbb{R}$

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

- This is equivalent to $f_{X \mid Y}(x \mid y)=f_{X}(x)$ and $f_{Y \mid X}(y \mid x)=f_{Y}(y)$ for all x and y.
- I.e. knowing y doesn't change the distribution of x and knowing x doesn't change the distribution of y.
- So knowing y doesn't tell you anything new about x and knowing x doesn't tell you anything new about y.

Extension of law of unconscious statistician

With two random variables X, Y we can create a new random variable $Z=g(X, Y)$ with $g: R \times R \rightarrow R$.

For example $g(x, y)=x+y$ or $g(x, y)=x \cdot y$.

Again we could try to compute the distribution of Z - hard (conscious statistician).

Or we have:

Law of Unconscious Statistician

$$
E(g(X, Y))=\sum_{x \in R_{x}, y \in R_{y}} g(x, y) f_{X, Y}(x, y)
$$

Consequences of law of unconscious statistician i

$$
E(X+Y)=E X+E Y
$$

$$
\begin{aligned}
E(X+Y) & =\sum_{x \in R_{x}, y \in R_{y}}(x+y) f_{X, Y}(x, y) \\
& =\sum_{x \in R_{x}, y \in R_{y}} x f_{X, Y}(x, y)+\sum_{x \in R_{x}, y \in R_{y}} y f_{X, Y}(x, y) \\
\text { Why? } & =\sum_{x \in R_{x}} x f_{X}(x)+\sum_{y \in R_{y}} y f_{Y}(y) \\
& =E X+E Y .
\end{aligned}
$$

More generally, if X_{1}, \ldots, X_{N} are random variables:
$E\left(\sum_{n=1}^{N} X_{n}\right)=\sum_{n=1}^{N} E X_{n}$.
To know the mean of the sum we don't need to know the joint distribution!

Consequences of law of unconscious statistician if

If X, Y are independent: $E(X \cdot Y)=E(X) \cdot E(Y)$

$$
\begin{aligned}
E(X \cdot Y) & =\sum_{x \in R_{x}, y \in R_{y}} x \cdot y \cdot f_{X, Y}(x, y) \\
\text { Independence: } & =\sum_{x \in R_{x}, y \in R_{y}} x \cdot y \cdot f_{X}(x) f_{Y}(y) \\
\text { Why? } & =\sum_{x \in R_{x}} x f_{X}(x) \sum_{y \in R_{y}} y f_{Y}(y) \\
& =E X \cdot E Y .
\end{aligned}
$$

Continuous Random Variables

This entire discussion on multiple random variables holds for continuous random varaibles by replacing sums with integrals.

- $\int_{x} \int_{y} f(x, y) d x d y=1$
- $f_{X}(x)=\int_{y} f(x, y) d y$ is the marginal density of X
- $f_{Y}(y)=\int_{X} f(x, y) d x$ is the marginal density of Y
- $f_{Y \mid X}(y \mid X=x)=f(x, y) / f_{X}(x)$ is the conditional density of Y given $X=x$
- $f_{X \mid Y}(x \mid Y=y)=f(x, y) / f_{Y}(y)$ is the conditional density of X given $Y=y$
- $E[g(X, Y)]=\int_{X} \int_{y} g(x, y) f(x, y) d x d y$
- $E[X+Y]=E[X]+E[Y]$
- $E[X Y]=E[X] E[Y]$ if X and Y are independent

Variance of a Random Variable

Variance of a random variable X with mean μ_{X} take $g(x)=\left(x-\mu_{X}\right)^{2}$.
$\operatorname{Var}(X)=\operatorname{Eg}(X)$.

Show that (on the chalk board):
$\operatorname{Var}(X)=E X^{2}-\mu_{X}^{2}$
$E(a X+b)=a E(X)+b$.
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

Covariance of two random variables

Covariance of two random variables X, Y with means μ_{X}, μ_{Y}.
Take $g(x, y)=\left(x-\mu_{X}\right) \cdot\left(y-\mu_{Y}\right)$.
$\operatorname{Cov}(X, Y)=E g(X, Y)$ - A measure of how the variables 'covary'. $\operatorname{Cov}(X, Y)>0 \longrightarrow$ when X increases Y tends to increase.
$\operatorname{Cov}(X, Y)<0 \longrightarrow$ when X increases Y tends to decrease. Show that $\operatorname{Cov}(a X, b Y)=a \cdot b \operatorname{Cov}(X, Y)$.

Changing the units of a measurement will change covariance.

Correlation of two random variables

Correlation $\rho(X, Y)$ does not depend on units of measurement:
$\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$
Show that: $\rho(a X, b Y)=\rho(X, Y)$.

Independence

Independence:

Show that $\operatorname{Cov}(X, Y)=E X Y-\mu_{X} \mu_{Y}$.
Conclude: If X, Y are independent $\operatorname{Cov}(X, Y)=0$. (Converse is not true.)

Variance of a sum of random variables

$$
\begin{aligned}
\operatorname{Var}(X+Y)= & E\left[(X+Y)^{2}\right]-[E(X+Y)]^{2} \\
= & E\left[X^{2}+2 X Y+Y^{2}\right]-[E(X)]^{2}-2 E(X) E(Y)-[E(Y)]^{2} \\
= & E\left(X^{2}\right)-[E(X)]^{2}+E\left(Y^{2}\right)-[E(Y)]^{2} \\
& +2 E(X Y)-2 E(X) E(Y) \\
= & \operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

Conclude: If X, Y independent: $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.
More generally, if X_{1}, \ldots, X_{N} are independent then
$\operatorname{Var}\left(\sum_{n=1}^{N} X_{n}\right)=\sum_{n=1}^{N} \operatorname{Var}\left(X_{n}\right)$.

Properties of sample average: Set up

We draw with replacement from a box containing tickets of numbers N times and record the number on each draw as $X_{1}, X_{2}, \ldots, X_{N}$. Because we draw with replacement we can assume that the variables X_{n} are independent.

Let μ_{B} be the average of the box and let σ_{B}^{2} be the mean square deviation (MSD) of the box.

Recall that $E X_{n}=\mu_{B}$ and $\operatorname{Var} X_{n}=\sigma_{B}^{2}$ for each n.
Denote the sample average as $\bar{X}=\frac{1}{N} \sum_{n=1}^{N} X_{n}$.

Mean of Sample Average

$$
\begin{aligned}
E \bar{X} & =\frac{1}{N} E \sum_{n=1}^{N} X_{n} \\
\text { Why? } & =\frac{1}{N} \sum_{n=1}^{N} E X_{n} \\
\text { Why? } & =\mu_{B} .
\end{aligned}
$$

Variance of Sample Average

The variance of the sample average

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\operatorname{Var}\left(\frac{1}{N} \sum_{n=1}^{N} X_{n}\right) \\
& =\frac{1}{N^{2}} \operatorname{Var}\left(\sum_{n=1}^{N} X_{n}\right) \\
\text { Independence: } & =\frac{1}{N^{2}} \sum_{n=1}^{N} \operatorname{Var}\left(X_{n}\right) \\
& =\frac{\sigma_{N}^{2}}{N}
\end{aligned}
$$

Conclusion

So the expected value of the average of the sample is the average of the box no matter how large the sample.

The variance of the sample average decreases as the sample size N increases.

Set up: Proportions

Example: X_{1}, \ldots, X_{N} are draws from a box of 0 's and 1's with replacement. Assume fraction of 1 's in the box is p.

Each X_{n} is $\operatorname{Ber}(\mathrm{p})$, i.e. $E X_{n}=p, \operatorname{Var}\left(X_{n}\right)=p(1-p)$.
Since the draws are with replacement we can assume they are independent and so writing $S=\sum_{n=1}^{N} X_{n}$ we have that S is Binomial(N, p). $f_{S}(n)=\binom{N}{n} p^{n}(1-p)^{N-n}$.
We can compute ES using the definition $\sum_{n=1}^{N} n\binom{N}{n} p^{n}(1-p)^{N-n}$ but that requires some complicated algebra.

Mean and variance of Sample Proportion

Instead we use the rules for mean and variance of a sum:

$$
E(S)=\sum_{n=1}^{N} E X_{n}=N p .
$$

And since X_{n} are independent:

$$
\operatorname{Var}(S)=\sum_{n=1}^{N} \operatorname{Var}\left(X_{n}\right)=N p(1-p)
$$

And for the sample average:

$$
E \bar{X}=E \frac{S}{N}=\frac{1}{N} E S=p
$$

$$
\operatorname{Var}(\bar{X})=\operatorname{Var}\left(\frac{S}{N}\right)=\frac{1}{N^{2}} N p(1-p)=\frac{p(1-p)}{N}
$$

The expected value of the sample average is p - the proportion of 1's in the box: it is centered in the 'right' place.

The variance of the sample average decreases with sample size.

