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Learning Objectives

e Sample Means/Sample Proportions converge to Normal
Distribution.

e Section 3.4.2, 3.4.3, 4.4 of DBC



Means of of Bernoulli’s



Recall: Bernoulli distribution

Recall that X is Bernoulli if its pmf is

pX(1—p)t> ifxec{0,1}

0 otherwise,

fx(X) =

for some p € [0,1]. Thatis, X is 1 with probability p and 0 with
probability 1 — p.

E.g., have a box with six 1's and two 0's and we draw a number,
then p=6/8 = 3/4.



Suppose we sample 100 numbers from this box with six 1's and two

0's with replacement. We can do this multiple times (say 5000):

p <- 3/4
samp <- replicate(n = 5000, sample(c(0, 1), 100, TRUE,
c(l - p, p)))
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CTL Visual

Now draw 5000 samples of size 900, 2500. Compute the means

samp900 <- replicate(n = 5000, sample(c(0, 1), 900, TRUE, c(1 - p, p)))
samp2500 <- replicate(n = 5000, sample(c(0, 1), 2500, TRUE, c(1 - p, p)))

sum100 <- colSums (samp)
sum900 <- colSums (samp900)
sum2500 <- colSums (samp2500)

Same as drawing from a binomial

b100 <- rbinom(5000, 100, 3/4)
b900 <- rbinom(5000, 900, 3/4)
b2500 <- rbinom(5000, 2500, 3/4)



Dividing sums or binomials by number of samples (100, 900, or
2500), we get the following histograms:
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Look the same because they are from the same distribution.



Center and Scale

Let's subtract the means (np for n = 100, 900, 2500) and divide by
the standard deviations (ny/p(1 — p)) and replot the histograms
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Now the histograms all have the same spread and are centered at
zero, but they are looking more and more like the normal
distribution.



n=>5

x <- scale(rbinom(n = 5000, size = 5, prob = p)) qqnorm(x)
gqline(x)

Normal Q-Q Plot
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n=10

x <- scale(rbinom(n = 5000, size = 10, prob = p)) qgnorm(x.
gqline(x)

Normal Q-Q Plot
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n=20

x <- scale(rbinom(n = 5000, size = 20, prob = p)) qgnorm(x.

gqline(x)
Normal Q-Q Plot
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n =50

x <- scale(rbinom(n = 5000, size = 50, prob = p)) qgnorm(x.

gqline(x)
Normal Q-Q Plot
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gqnorm(sum100) gqline(sum100)

Normal Q-Q Plot
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ggnorm(sum900) gqgline(sum900)

Normal Q-Q Plot
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ggnorm(sum2500) qgline (sum2500)

Normal Q-Q Plot
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Central Limit Theorem

That sums/means of a large number of random variables are well
approximated by the normal distribution is a general result that we
will prove using the chalk board.
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	Means of of Bernoulli's

