# **Confidence Intervals for a Mean**

David Gerard 2017-10-25

- Inference for a population mean.
- Confidence intervals for a population mean.
- Interpreting confidence intervals.
- Sections 4.1 and 4.2 of DBC.

#### • Statistics (Inference):

- Just observe a sample. What can we conclude (probabilistically) about the population?
- Sample  $\longrightarrow$  Population?
- Messy and more of an art.
- No correct answers. Lots of wrong answers. Some "good enough" answers.

#### • Probability (from the viewpoint of Statisticians):

- Logically self-contained, a subset of Mathematics.
- One correct answer.
- We know the population. What is the probability of the sample?
- Population  $\longrightarrow$  Sample?

# Speed of Light

In 1879, Albert Michaelson ran an experiment to estimate the speed of light. Let's use his data. (Different from the famous Michaelson-Morley experiment.)

```
library(tidyverse)
data("morley")
glimpse(morley)
Observations: 100
Variables: 3
$ Run <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13...
$ Speed <int> 850, 740, 900, 1070, 930, 850, 950, 980, ...
```

Speed is in units km/s with 299,000 subtracted.

#### A histogram

```
hist(morley$Speed, xlab = "Speed",
    main = "Histogram of Speed Measurements", xlim = c(600
abline(v = mean(morley$Speed), col = 2,
    lty = 2, lwd = 2)
```

#### **Histogram of Speed Measurements**



Speed

If this experiment were done with no bias, then:

• 
$$E[\bar{X}] = \mu$$

- $SD(\bar{X}) = \sigma/\sqrt{n}$
- $\bar{X} \xrightarrow[n \to \infty]{} \mu$  (Law of Large Numbers)
- $\bar{X} \sim N(\mu, \sigma^2/n)$ , approximately (Central Limit Theorem).

- Right now, our best guess for the value of  $\mu$  is  $\bar{X} = 852.4$ .
- However, point estimates are not exact.



**Histogram of Speed Measurements** 

 $\bar{X} = 861.7$ 





 $\bar{X} = 849.5$ 



**Histogram of Speed Measurements** 

 $\bar{X} = 859.7$ 





 $\bar{X} = 849.2$ 

- Unfortunately, we never actually observe other values of  $\bar{X}$ .
- Luckily, we have theory that says that for most random variables, we know the distribution of  $\bar{X}$ .
- $\bar{X} \sim N(\mu, \sigma^2/n)$ .
- So we know on average how far away  $\bar{X}$  will be from  $\mu$  on average.

#### 68-95-99.7 rule

In the Normal distribution with mean  $\mu$  and standard deviation  $\sigma$ 

- Approximately 68% of the observations fall within  $\sigma$  of  $\mu$
- Approximately 95% of the observations fall within  $2\sigma$  of  $\mu$
- Approximately 99.7% of the observations fall within 3 $\sigma$  of  $\mu$

This rule does not depend on the values of  $\mu$  and  $\sigma$ .

#### Recall: 68-95-99.7 rule



Applying this rule to  $\bar{X}$ 

$$P\left(\mu-2\sigma/\sqrt{n}\leqar{X}\leq\mu+2\sigma/\sqrt{n}
ight)=0.95$$

Rearranging terms we get

$$P\left(ar{X}-2\sigma/\sqrt{n}
ight)\leq \mu\leq ar{X}+2\sigma/\sqrt{n}
ight)=0.95.$$

That is, the random interval  $(\bar{X} - 2\sigma/\sqrt{n}, \bar{X} + 2\sigma/\sqrt{n})$  covers the mean  $\mu$  in 95% of all samples.

- $\sigma$  is a population parameter, that we generally don't know.
- Recall that we use s, the sample standard deviation, as a point estimate of σ.
- For large *n*, using *s* instead of  $\sigma$  doesn't matter.
- For small n (e.g. n ≤ 30), intervals are too small (more on this later).

- 1. Take a random sample of size n calculate the sample mean  $\bar{X}$
- 2. If n is large enough, then can assume  $ar{X} \sim N(\mu, \sigma^2/n)$
- 3. The 95% confidence interval is given by

$$\left(ar{X}-1.96rac{s}{\sqrt{n}},ar{X}+1.96rac{s}{\sqrt{n}}
ight)$$

1.96 is slightly more accurate than 2. In practice this doesn't matter too much.

What if we repeat the following over and over again:

- 1. Draw a sample of size *n*.
- 2. Calculate a 95% confidence interval.

Then 95% of these intervals will cover the true parameter.

| mu        | <- | 10                                               |
|-----------|----|--------------------------------------------------|
| sigma     | <- | 1                                                |
| n         | <- | 100                                              |
| simout    | <- | <pre>replicate(20, rnorm(n = n, mean = mu,</pre> |
|           |    | sd = sigma))                                     |
| xbar_vec  | <- | <pre>colMeans(simout)</pre>                      |
| s_vec     | <- | <pre>apply(simout, 2, sd)</pre>                  |
| lower_vec | <- | <pre>xbar_vec - 1.96 * s_vec / sqrt(n)</pre>     |
| upper_vec | <- | xbar_vec + 1.96 * s_vec / sqrt(n)                |

## Covering True Mean i



## Covering True Mean ii



## Covering True Mean iii



## Covering True Mean iv



## Covering True Mean v



## Covering True Mean vi



## Covering True Mean vii





## Covering True Mean viii





## Covering True Mean ix





# Covering True Mean x





## Covering True Mean xi





## Covering True Mean xii





## Covering True Mean xiii





## Covering True Mean xiv





## Covering True Mean xv





## Covering True Mean xvi





## Covering True Mean xvii





## Covering True Mean xviii





## Covering True Mean xix





## Covering True Mean xx





- Using this procedure, a 95% confidence interval for the speed of light is (299837, 299868) km/s.
- The actual speed of light is 299,792 km/s.
- Is this one of the 5% of times or is it due to bias?

- Using this procedure, a 95% confidence interval for the speed of light is (299837, 299868) km/s.
- The actual speed of light is 299,792 km/s.
- Is this one of the 5% of times or is it due to bias?
- Probably bias since this our observed  $\bar{X} = 852.4$  correponds to the 99.9999999999999 percentile of a  $N(792, s^2)$  distribution.
- But pretty close for 1879!

## Correct/Incorrect Descriptions of CI

Let I and u be the lower and upper bounds, respectively, of a 95% confidence interval.

What does "With 95% Confidence,  $\mu$  is between (I, u)" mean? Which interpretations are correct/incorrect?

- 1. The probability of  $\mu$  being between *I* and *u* is 95%.
- 2. Prior to sampling, the probability of  $\mu$  being between *I* and *u* is 95%.
- 3. 95% of the population's distribution is between I and u.
- 4. If we were to draw another sample, the new  $\bar{X}$  would be between *l* and *u* with 95% probability.
- 5. 95% of new  $\overline{X}$ 's would lie between I and u.
- 6. We used a procedure that captures the true  $\mu$  95% of the time in repeated samples.

Given that we observed an interval,  $\mu$  is either in the interval or it's not in the interval. Thus, the probability of  $\mu$  being between *I* and u is either 0 or 1, but we don't know which.

"Prior to sampling" makes the statement correct because we haven't yet made our interval and it is the interval that is random.

#### Distribution of population:



Obtain a sample



#### Calculate confidence interval



95% of population is NOT within the bounds of the Cl.



# 4 and 5 are wrong

#### Distribution of Population





Distribution of  $\bar{X}$  when n = 30

## 4 and 5 are wrong

#### What if we observed this $\bar{\boldsymbol{x}}$



## 4 and 5 are wrong





If we used this procedure over and over again, then 95% of the resulting Cl's would capture  $\mu.$ 

In general, a CI for a parameter has the form

 $\mathsf{estimate} \pm \mathsf{margin} \ \mathsf{of} \ \mathsf{error}$ 

where the margin of error is determined by the confidence level  $(1 - \alpha)$ , the population SD  $\sigma$ , and the sample size *n*.

A  $(1 - \alpha)$  confidence interval for a parameter  $\theta$  is an interval computed from a SRS by a method with probability  $(1 - \alpha)$  of containing the true  $\theta$ .

For a random sample of size *n* drawn from a population of unknown mean  $\mu$  and known SD  $\sigma$ , a  $(1 - \alpha)$  Cl for  $\mu$  is

$$\bar{x} \pm z^* \frac{\sigma}{\sqrt{n}}$$

Here  $z^*$  is the **critical value**, selected so that a standard Normal density has area  $(1 - \alpha)$  between  $-z^*$  and  $z^*$ .

The quantity  $z^*\sigma/\sqrt{n}$ , then, is the margin error.

If the population distribution is normal, the interval is *exact*. Otherwise, it is *approximately correct for large n*.

- We knew from normal theory that about 95% of x̄'s would be within 2 standard deviations of μ.
- Suppose we want to capture  $\mu$  more often (99%) or are willing to capture it less often (90%). Then we need to find how many standard deviations make it so that  $\bar{x}$  is away from  $\mu$  99% of the time or 90% of the time.
- In general, we need to find the number of standard deviations so that  $\bar{x}$  is away from  $\mu$  about  $1 \alpha$  of the time.

#### General form of a confidence interval

#### Finding $z^*$

For a given confidence level  $(1 - \alpha)$ , how do we find  $z^*$ ?

Let  $Z \sim N(0, 1)$ :



$$P(-z^* \le Z \le z^*) = (1 - \alpha) \iff P(Z < -z^*) = \frac{\alpha}{2}$$

Thus, for a given confidence level  $(1 - \alpha)$ , we can look up the corresponding  $z^*$  value on the Normal table.

#### **Common** *z*<sup>\*</sup> values:

| Confidence Level | 90%   | 95%  | 99%   |
|------------------|-------|------|-------|
| <i>z</i> *       | 1.645 | 1.96 | 2.576 |

#### Some cautions on using the formula

- Any formula for inference is correct only in specific circumstances.
- The data must be a SRS from the population.
- Because  $\bar{x}$  is not resistant, outliers can have a large effect on the confidence interval.
- If the sample size is small and the population is not Normal, the true confidence level will be different.
- You need to know the standard deviation σ of the population (or have a large enough sample where s ≈ σ).