Confidence Intervals for a Mean

David Gerard
2017-10-25

Learning Objectives

- Inference for a population mean.
- Confidence intervals for a population mean.
- Interpreting confidence intervals.
- Sections 4.1 and 4.2 of DBC.

Review: Statistics vs Probability

- Statistics (Inference):
- Just observe a sample. What can we conclude (probabilistically) about the population?
- Sample \longrightarrow Population?
- Messy and more of an art.
- No correct answers. Lots of wrong answers. Some "good enough" answers.
- Probability (from the viewpoint of Statisticians):
- Logically self-contained, a subset of Mathematics.
- One correct answer.
- We know the population. What is the probability of the sample?
- Population \longrightarrow Sample?

Speed of Light

In 1879, Albert Michaelson ran an experiment to estimate the speed of light. Let's use his data. (Different from the famous Michaelson-Morley experiment.)
library (tidyverse)
data("morley")
glimpse(morley)

Observations: 100
Variables: 3
\$ Expt <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
\$ Run <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13...
$\$$ Speed <int> $850,740,900,1070,930,850,950,980, \ldots$

Speed is in units km / s with 299,000 subtracted.

A histogram

```
hist(morley$Speed, xlab = "Speed",
    main = "Histogram of Speed Measurements", xlim = c(600
abline(v = mean(morley$Speed), col = 2,
lty = 2, lwd = 2)
```

Histogram of Speed Measurements

What can we say

If this experiment were done with no bias, then:

- $E[\bar{X}]=\mu$
- $S D(\bar{X})=\sigma / \sqrt{n}$
- $\bar{X} \underset{n \rightarrow \infty}{\longrightarrow} \mu$ (Law of Large Numbers)
- $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$, approximately (Central Limit Theorem).

Point Estimate

- Right now, our best guess for the value of μ is $\bar{X}=852.4$.
- However, point estimates are not exact.

A different sample

Histogram of Speed Measurements

$\bar{X}=861.7$

A different sample

Histogram of Speed Measurements

A different sample

Histogram of Speed Measurements

$\bar{X}=859.7$

A different sample

Histogram of Speed Measurements

- Unfortunately, we never actually observe other values of \bar{X}.
- Luckily, we have theory that says that for most random variables, we know the distribution of \bar{X}.
- $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$.
- So we know on average how far away \bar{X} will be from μ on average.

Recall: 68-95-99.7 rule

68-95-99.7 rule

In the Normal distribution with mean μ and standard deviation σ

- Approximately 68% of the observations fall within σ of μ
- Approximately 95% of the observations fall within 2σ of μ
- Approximately 99.7% of the observations fall within 3σ of μ

This rule does not depend on the values of μ and σ.

Recall: 68-95-99.7 rule

A random interval

Applying this rule to \bar{X}

$$
P(\mu-2 \sigma / \sqrt{n} \leq \bar{X} \leq \mu+2 \sigma / \sqrt{n})=0.95
$$

Rearranging terms we get

$$
P(\bar{X}-2 \sigma / \sqrt{n}) \leq \mu \leq \bar{X}+2 \sigma / \sqrt{n})=0.95 .
$$

That is, the random interval ($\bar{X}-2 \sigma / \sqrt{n}, \bar{X}+2 \sigma / \sqrt{n}$) covers the mean μ in 95% of all samples.

What about σ ?

- σ is a population parameter, that we generally don't know.
- Recall that we use s, the sample standard deviation, as a point estimate of σ.
- For large n, using s instead of σ doesn't matter.
- For small n (e.g. $n \leq 30$), intervals are too small (more on this later).

Calculating 95\% Confidence Intervals for Mean

1. Take a random sample of size n calculate the sample mean \bar{X}
2. If n is large enough, then can assume $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$
3. The 95% confidence interval is given by

$$
\left(\bar{X}-1.96 \frac{s}{\sqrt{n}}, \bar{X}+1.96 \frac{s}{\sqrt{n}}\right)
$$

1.96 is slightly more accurate than 2 . In practice this doesn't matter too much.

Intuition of Cl

What if we repeat the following over and over again:

1. Draw a sample of size n.
2. Calculate a 95% confidence interval.

Then 95% of these intervals will cover the true parameter.

Visual

mu	<- 10
sigma	<- 1
n	<- 100
simout	$\begin{gathered} <-\operatorname{replicate}(20, \operatorname{rnorm}(\mathrm{n}=\mathrm{n}, \text { mean }=\mathrm{mu}, \\ \operatorname{sd}=\operatorname{sigma})) \end{gathered}$
xbar_vec	<- colMeans(simout)
s_vec	<- apply(simout, 2, sd)
lower_vec	<- xbar_vec - 1.96 * s_vec / sqrt(n)
upper_vec	<- xbar_vec + 1.96 * s_vec / sqrt(n)

Covering True Mean i

95\% Confidence Intervals

Covering True Mean it

95\% Confidence Intervals

Covering True Mean iif

95\% Confidence Intervals

Covering True Mean iv

95\% Confidence Intervals

Covering True Mean

95\% Confidence Intervals

Covering True Mean vi

95\% Confidence Intervals

Covering True Mean vif

95\% Confidence Intervals

Covering True Mean vifi

95\% Confidence Intervals

Covering True Mean ix

95\% Confidence Intervals

Covering True Mean x

95\% Confidence Intervals

Covering True Mean xi

95\% Confidence Intervals

Covering True Mean xif

95\% Confidence Intervals

Covering True Mean xiif

95\% Confidence Intervals

Covering True Mean xiv

95\% Confidence Intervals

Covering True Mean xv

95\% Confidence Intervals

Covering True Mean xvi

95\% Confidence Intervals

Covering True Mean xvii

95\% Confidence Intervals

Covering True Mean xviii

95\% Confidence Intervals

Covering True Mean xix

95\% Confidence Intervals

Covering True Mean xx

95\% Confidence Intervals

Michaelson Experiment

- Using this procedure, a 95% confidence interval for the speed of light is $(299837,299868) \mathrm{km} / \mathrm{s}$.
- The actual speed of light is $299,792 \mathrm{~km} / \mathrm{s}$.
- Is this one of the 5% of times or is it due to bias?

Michaelson Experiment

- Using this procedure, a 95% confidence interval for the speed of light is $(299837,299868) \mathrm{km} / \mathrm{s}$.
- The actual speed of light is $299,792 \mathrm{~km} / \mathrm{s}$.
- Is this one of the 5% of times or is it due to bias?
- Probably bias since this our observed $\bar{X}=852.4$ correponds to the 99.999999999999th percentile of a $N\left(792, s^{2}\right)$ distribution.
- But pretty close for 1879 !

Correct/Incorrect Descriptions of Cl

Let I and u be the lower and upper bounds, respectively, of a 95% confidence interval.

What does "With 95% Confidence, μ is between (I, u) " mean?
Which interpretations are correct/incorrect?

1. The probability of μ being between / and u is 95%.
2. Prior to sampling, the probability of μ being between I and u is 95%.
3. 95% of the population's distribution is between $/$ and u.
4. If we were to draw another sample, the new \bar{X} would be between I and u with 95% probability.
5. 95% of new \bar{X} 's would lie between I and u.
6. We used a procedure that captures the true $\mu 95 \%$ of the time in repeated samples.

Given that we observed an interval, μ is either in the interval or it's not in the interval. Thus, the probability of μ being between / and u is either 0 or 1 , but we don't know which.

2 is correct

"Prior to sampling" makes the statement correct because we haven't yet made our interval and it is the interval that is random.

3 is wrong

Distribution of population:

3 is wrong

Obtain a sample

number
Population Mean
Sample Mean

3 is wrong

Calculate confidence interval

3 is wrong

95% of population is NOT within the bounds of the Cl .

number

- Lower Bound

Upper Bound

4 and 5 are wrong

Distribution of Population

4 and 5 are wrong

Distribution of \bar{X} when $n=30$

4 and 5 are wrong

What if we observed this \bar{x}

4 and 5 are wrong

Then 95% of future \bar{x} 's are not within Cl bounds.

6 is correct

If we used this procedure over and over again, then 95% of the resulting Cl's would capture μ.

General form of a confidence interval

In general, a Cl for a parameter has the form

$$
\text { estimate } \pm \text { margin of error }
$$

where the margin of error is determined by the confidence level $(1-\alpha)$, the population SD σ, and the sample size n.

A $(1-\alpha)$ confidence interval for a parameter θ is an interval computed from a SRS by a method with probability $(1-\alpha)$ of containing the true θ.

For a random sample of size n drawn from a population of unknown mean μ and known SD σ, a $(1-\alpha) \mathrm{CI}$ for μ is

$$
\bar{x} \pm z^{*} \frac{\sigma}{\sqrt{n}}
$$

General form of a confidence interval

Here z^{*} is the critical value, selected so that a standard Normal density has area $(1-\alpha)$ between $-z^{*}$ and z^{*}.

The quantity $z^{*} \sigma / \sqrt{n}$, then, is the margin error.
If the population distribution is normal, the interval is exact.
Otherwise, it is approximately correct for large n.

Intuition

- We knew from normal theory that about 95% of \bar{x} 's would be within 2 standard deviations of μ.
- Suppose we want to capture μ more often (99\%) or are willing to capture it less often (90%). Then we need to find how many standard deviations make it so that \bar{x} is away from $\mu 99 \%$ of the time or 90% of the time.
- In general, we need to find the number of standard deviations so that \bar{x} is away from μ about $1-\alpha$ of the time.

General form of a confidence interval

Finding z^{*}
For a given confidence level $(1-\alpha)$, how do we find z^{*} ?
Let $Z \sim N(0,1)$:

$$
P\left(-z^{*} \leq Z \leq z^{*}\right)=(1-\alpha) \Longleftrightarrow P\left(Z<-z^{*}\right)=\frac{\alpha}{2}
$$

General form of a confidence interval

Thus, for a given confidence level $(1-\alpha)$, we can look up the corresponding z^{*} value on the Normal table.

Common z^{*} values:

Confidence Level	90%	95%	99%
z^{*}	1.645	1.96	2.576

General form of a confidence interval

Some cautions on using the formula

- Any formula for inference is correct only in specific circumstances.
- The data must be a SRS from the population.
- Because \bar{x} is not resistant, outliers can have a large effect on the confidence interval.
- If the sample size is small and the population is not Normal, the true confidence level will be different.
- You need to know the standard deviation σ of the population (or have a large enough sample where $s \approx \sigma$).

