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Learning Objectives

• Hypothesis tests.

• Connection to confidence intervals.

• Section 4.3 of DBC
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Motivation

• Often, scientists want to test for binary decisions.

• E.g. Does this gene impact height (Yes/No)

• E.g. Does broccoli cause cancer (Yes/No)

• E.g. Is Trump’s phone source associated with negative words

(Yes/No)?

• Today, we’ll talk about making binary decisions in the context

of a question on Old Faithful’s reliability.
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Hypothesis test

• A hypothesis test is an assessment of the evidence provided by

the data in favor of (or against) some claim about the

population.

• For example, suppose we perform a randomized experiment or

take a random sample and calculate some sample statistic, say

the sample mean.

• We want to decide if the observed value of the sample

statistic is consistent with some hypothesized value of the

corresponding population parameter.

• If the observed and hypothesized value differ (as they almost

certainly will), is the difference due to an incorrect hypothesis

or merely due to chance variation?
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Old Faithful

• Old Faithful is a geyser in Yellowstone National Park that is

known for erupting approximately once every hour.

• That is, the lore is that the average eruption time for Old

Faithful is 60 minutes.

• We want to see if data corroborate this lore.
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Old Faithful Dataset

Waiting time between eruptions and the duration of the eruption

for the Old Faithful geyser in Yellowstone National Park,

Wyoming, USA.

Data consist of two variables

• duration Eruption time in mins.

• waiting Waiting time to this eruption (in mins).
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Old Faithful Dataset

library(tidyverse) ## for glimpse() function

library(MASS) ## contains geyser dataset

data("geyser")

glimpse(geyser)

Observations: 299

Variables: 2

$ waiting <dbl> 80, 71, 57, 80, 75, 77, 60, 86, 77, 56...

$ duration <dbl> 4.017, 2.150, 4.000, 4.000, 4.000, 2.0...

waiting <- geyser$waiting
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Hypotheses

Using these data, we wish to decide between one of two

hypotheses:

• H0 The mean eruption time µ for Old Faithful is 60 minutes.

• HA The mean eruption time µ for Old Faithful is not 60

minutes.

• Formulating different hypotheses is the first step in any

testing scenario.
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General Form of Hypotheses

• The null hypothesis H0 is the statement being tested. Usually

it states that the difference between the observed value and

the hypothesized value is only due to chance variation. For

example, µ = 60.

• The alternative hypothesis HA is the statement we will favor if

we find evidence that the null hypothesis is false. It usually

states that there is a real difference between the observed and

hypothesized values. For example, µ 6= 60, µ > 60, or µ < 60.

• A test is called

• two-sided if HA is of the form µ 6= 60.

• one-sided if HA is of the form µ < 60 or µ > 60.
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Some EDA i

hist(waiting)
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Some EDA ii

boxplot(waiting, ylab = "waiting time")
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Some EDA iii

summary(waiting)

Min. 1st Qu. Median Mean 3rd Qu. Max.

43.0 59.0 76.0 72.3 83.0 108.0
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Conclusion from EDA

• EDA suggests µ 6= 60, but again, this might be due to

random variation.

• We need some formal way to evaluate the unlikeliness of the

data we observe under H0.
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Confidence Intervals

Recall for large enough n

x̄ ∼ N(µ, σ2/n).

• We used this result in the previous lecture to come up with

95% confidence intervals.

• That is, x̄ is will only deviate from µ by more than 2 standard

deviations in approximately 5% of repeated samples.

• So µ is between x̄ − 2σ/
√
n and x̄ + 2σ/

√
n in about 95% of

repeated samples.

• So if our hypothesized µ (60 minutes) is outside of this

interval, it is unlikely that µ = 60.
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Calculating CI

• x̄ = 72.31.

• s = 13.89.

• CI: (70.74, 73.89).

• Since 60 /∈ (70.74, 73.89), we are left with one of two
conclusions:

1. H0 is true (so µ = 60) and what we observed is an extremely

rare event.

2. HA is true and µ 6= 60.

• Since the data are unlikely to have been observed if H0 were

true, we reject H0 and conclude that µ 6= 60.
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Type I Error

• What if H0 were actually true?

• Recall that a 95% CI only covers the true µ in 95% of

repeated samples.

• So the sample we actually observed could be one of the 5% of

samples that misses the true µ and we incorrectly rejected H0.

• When we incorrectly reject H0 this is called (rather stupidly) a

Type I error.

• Some call this, more intuitively, a false discovery or a false

positive.

• If we used, instead of a 95% CI, a (1 - α)% CI, in what

proportion of repeated samples would we make a Type I error?
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Type II Error

• We could also have failed to reject H0 when in fact H0 is false.

• This is called a Type II Error, or a false negative.
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Subtle Language

• We say “reject H0” when we have evidence against H0.

• We say “fail to reject H0” when we do not have enough

evidence against H0.

• We generally never say “accept H0”.

• There are philosophical reasons for this: lack of evidence

against a hypothesis is not the same as evidence for a

hypothesis — e.g. a “not guilty” verdict in court does not

mean “innocent”.

• There are practical reasons for this: If a scientist wanted to

publish a result, he could make his desired hypothesis H0 and

then collect a very small sample size. He would usually fail to

reject H0 and could publish a lot of bad papers.
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More Formal Testing



Motivation

The CI approach to hypothesis testing is too course.

• If a hypothesized µ is just inside a 95% confidence interval, we

want to say that we fail to reject H0, but it was a close call.
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Motivation

The CI approach to hypothesis testing is too course.

• If a µ so so far away from the boundary of the 95% CI, we

want to say that H0 is super super unlikely to be true.
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p-value

p-value

The p-value is the probability of observing data at least as

favorable to the alternative hypothesis as our current data set, if

the null hypothesis were true.

• A small p-value (close to 0) means that the data would be

very unlikely under H0, providing evidence for HA.

• A large p-value (not close to 0) means that the data would be

likely under H0, not providing evidence for HA.

• Generally, we reject H0 if the p-value is below some level α. In

this case, α is called the significance level of a test.
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How do we caluclate a p-value?

We know the distribution of x̄ under H0, so we can calculate the

probability of seeing data as extreme or more extreme than x̄ under

H0 using normal probabilities.

E.g. If x̄ = 61.4, we would calculate these probabilities.
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Why both tails?

• Recall that HA : µ 6= 60.

• The definition of a p-value is the probability of seeing

something as extreme or more extreme (under the null) than

what we saw.

• Since µ0 − (x̄ − µ0) is as extreme as x̄ , we have to include

this in our p-value calculation.
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One sided hypothesis

If HA : µ > 60 and x̄ = 61.4.
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One sided hypothesis

If HA : µ < 60 and x̄ = 61.4.
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But we are in this case

How do we calculate these probabilities?
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How do we calculate these probablities

• We have, under the null X̄ ∼ N(µ, σ2/n)

• We want Pr(X̄ > 61.4 or X̄ < 58.6) (since 58.6 is 1.4 away

from 60, as is our (pretend) observed statistics 61.4).

• This is equal to 2Pr(X̄ > 61.4).

• We will insert s = 13.8903 for σ here.

2 * pnorm(q = 61.4, mean = 60, sd = 13.89 / sqrt(299),

lower.tail = FALSE)

[1] 0.08136
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Another way

We could also use this fact

Standard Normal

Let X ∼ N(µ, σ2). Let Z = X−µ
σ . Then Z ∼ N(0, 1). The

normal distribution with mean 0 and standard deviation 1 is

sometimes called the standard normal distribution.

28



Using Standard Normal

In which case,

Pr(|X̄ − 60| > 1.4) = Pr

(∣∣∣∣ X̄ − 60

13.89/
√

299

∣∣∣∣ > 1.743

)
= Pr(|Z | > 1.743),

where Z ∼ N(0, 1).

2 * pnorm(-1.743)

[1] 0.08133
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Conclusion

• 61.4 is a made-up value. But if it were real, we might choose

a significance level of α = 0.05.

• In which case, since 0.0813 > 0.05, we would fail to reject H0

and say that we do not have enough evidence to conclude

that Old Faithful erupts differently than once every hour.

• Why α = 0.05? NO REASON. But everyone in the entire

world uses α = 0.05.
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Real data

The value 61.4 was made up. Let’s calculate the p-value given our

real observation of 72.31.

xbar <- mean(waiting)

s <- sd(waiting)

n <- length(waiting)

z <- (xbar - 60) / (s / sqrt(n))

2 * pnorm(-abs(z))

[1] 4.837e-53
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Conclusion

• Since 4.8365× 10−53 << 0.05, we strongly reject H0 and

conclude that Old Faithful does not on average erupt once an

hour.
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How to interpret the significance level

• Suppose P is the p-value we obtain. Then P is itself a

random variable that has a distribution.

• Given a significance level, α, then one can show that, under

the H0, Pr(P ≤ α) = α.

• That is, if we reject H0 whenever P < α, then we would

expect a Type I error rate of α under the null.

• A larger significance level α means that we have a larger Type

I error rate, but a smaller Type II error rate.

• A smaller α means that we have a smaller Type I error rate

but a larger Type II error rate.

• We generally only control for Type I error rate (by setting α).
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Summary of p-value for means and

further thoughts



Step 1

Formulate the null hypothesis and the alternative hypothesis

• The null hypothesis H0 is the statement being tested.

Usually it states that the difference between the observed

value and the hypothesized value is only due to chance

variation. For example, µ = 60 minutes.

• The alternative hypothesis Ha is the statement we will favor

if we find evidence that the null hypothesis is false. It usually

states that there is a real difference between the observed and

hypothesized values.

For example, µ 6= 60, µ > 60, or µ < 60.

A test is called

• two-sided if HA is of the form µ 6= 60.

• one-sided if HA is of the form µ > 60, or µ < 60.
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Step 2

Calculate the test statistic on which the test will be based.

The test statistic measures the difference between the observed

data and what would be expected if the null hypothesis were true.

Our goal is to answer the question, “How many standard errors is

the observed sample value from the hypothesized value (under the

null hypothesis)?”

For the Old Faithful example, the test statistic is

z =
x̄ − µ0
s/
√
n

=
72.31− 60

13.89/
√

299
= 15.3298
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Step 3

Find the p-value of the observed result

• The p-value is the probability of observing a test statistic as

extreme or more extreme than actually observed, assuming

the null hypothesis H0 is true.

• The smaller the p-value, the stronger the evidence against the

null hypothesis.

• if the p-value is as small or smaller than some number α (e.g.

0.01, 0.05), we say that the result is statistically significant

at level α.

• α is called the significance level of the test.

In the case of the Old Faithful example, p = 4.8365× 10−53 for a

two-sided test.
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How to calculate p-values

For Z ∼ N(0, 1), the p-values for different alternative hypotheses:

• HA : µ > µ0 – p-value is P(Z ≥ z) (area of right-hand tail)

• HA : µ < µ0 – p-value is P(Z ≤ z) (area of left-hand tail)

• HA : µ 6= µ0 – p-value is 2P(Z ≥ |z |) (area of both tails)
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How to interpret p-values
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Test interpretations

Saying that a result is statistically significant does not signify that

it is large or necessarily important. That decision depends on the

particulars of the problem. A statistically significant result only

says that there is substantial evidence that H0 is false. Failure to

reject H0 does not imply that H0 is correct. It only implies that we

have insufficient evidence to conclude that H0 is incorrect.
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Correct/Incorrect interpretation of Hypothesis tests?

1. The p-value is the probability of seeing data that supports the

alternative hypothesis as strong or stronger than what we saw.

2. The p-value is the probability that the null hypothesis is

correct. A smaller p-value means that the null is less probable

and so we may reject it in favor of the alternative.

3. A large p-value is strong evidence in favor of the null

hypothesis.

4. If we rejected H0, then the null hypothesis is totally not true.

5. If α = 0.05, then we would expect about 1 study in 20 to

incorrectly reject the null hypothesis.
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Proportions



Proportions

What if we have 0/1 (Bernoulli) data? E.g. the CLOUDS variable

from the Bob Ross dataset.

Zi =

1 if a cloud is in the painting

0 if a cloud is not in the painting.

Then the proportion of clouds is itself a mean

p̂ = x̄ =
1

n

∑
i

zi = 0.4442
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Using CLT

Say we wanted to test the hypothesis that Bob uses clouds less

than 50% of the time. So H0 : p = 0.5 vs HA : p < 0.5.

By the central limit theorem, even this sample average is

approximately normal. So we could use the techniques for sample

means to calculate this p-value.

xbar <- mean(clouds)

s <- sd(clouds)

n <- length(clouds)

z <- (xbar - 0.5) / (s / sqrt(n))

pvalue <- pnorm(z)

pvalue

[1] 0.01213
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Exact Calculation

But we know the sampling distribution of p̂ under H0 exactly.

np̂ =
∑
i

Zi ∼ Binomial(n, 0.5)

So we can calculate how extreme our observed np̂ = 179 out of

n = 403 is using the binomial distribution.

nphat <- sum(clouds)

pbinom(q = nphat, size = n, prob = 0.5)

[1] 0.01413

This is fairly close to the p-value using the normal approximation

0.0121.
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Formal Connection Between

Hypothesis Tests and CI’s



Critical Value zα

• If the P-value is less than α we reject H0.

• For a two sided test This requires computing P(|Z | ≥ z), for

the observed test statistic z , and comparing it to α.

• Alternatively we can find the critical value zα such that

P(|Z | ≥ zα) = α and check if |z | > zα.

• For a one-sided test we find zα such that P(Z > zα) = α and

check if z > zα.
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Hypothesis tests and CI’s

A level α two-sided test rejects a hypothesis H0 : µ = µ0 exactly

when the value of µ0 falls outside a (1− α) confidence interval for

µ.

For example, consider a two-sided test of the following hypotheses

H0 : µ = µ0

Ha : µ 6= µ0

at the significance level α = .05.

Assume the test statistic is z and

2P(Z > |z |) = 2P(Z > z) = p < α. Let zα be the critical value

for level α. Assume the population SD is σ0.
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Hypothesis tests and CI’s

p <α

m
z > zα or z < −zα

m
x̄ − µ0

σ0/
√
n
> zα or

x̄ − µ0

σ0/
√
n
< −zα

m

µ0 < x̄ − zα ·
σ0√
n

or µ0 > x̄ + zα ·
σ0√
n

m

µ0 /∈[x̄ − zα ·
σ0√
n
, x̄ + zα ·

σ0√
n

]

µ0 is not in the α confidence interval if and only if the null hypothesis is

rejected at the α level.
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Hypothesis tests and CI’s

• If µ0 is a value inside the 95% confidence interval for µ, then

this test will have a p-value greater than .05, and therefore

will not reject H0.

• If µ0 is a value outside the 95% confidence interval for µ, then

this test will have a p-value smaller than .05, and therefore

will reject H0.
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End of class examples



What’s wrong

1. A significance test rejected the null hypothesis that the

sample mean is equal to 500.

2. A test preparation company wants to test that the average

score of its students on the ACT is better than the national

average score of 21.2. The company states its null hypothesis

to be H0 : µ > 21.2.

3. A study summary says that the results are statistically

signficant and the p-value is 0.98.

4. The z test statistic is equal to 0.018. Because this is less than

α = 0.05, the null hypothesis was rejected.
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Example

Sonnets by a certain Elizabethan poet are known to contain an

average µ = 8.9 new words (words not found in the poet’s other

works). The standard deviation of the number of new words is

σ = 2.5. A new manuscript with six new sonnets has come to light

and scholars are debating wheter it is the poet’s work. The new

sonnets contain an average of x̄ = 10.2 words not used in the

poet’s known works. We expect poems by another authro to

contain more new words. Set up a hypothesis test, calculate a

p-value, and form a conclusion.
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