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Learning Objectives

• Introduce t-distribution.

• CI’s and testing using the t-distribution.

• Section 5.1 of DBC.
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Review Normal-based Confidence

Intervals



Normal CI

When we wanted a (1− α) confidence interval for a mean, and we

had a sample X1,X2, . . . ,Xn such that E [Xi ] = µ and

var(Xi ) = σ2, we used the fact that for large n

X̄ ≈ N(µ, σ2/n).

i.e. that

X̄ − µ
σ/
√
n
≈ N(0, 1).
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Normal CI

Based on α, we found a zα such that

P

(
X̄ − µ
σ/
√
n
∈ [−zα, zα]

)
= 1− α

Rearranging terms, we got

P(X̄ − zασ/
√
n ≤ µ ≤ x̄ + zασ/

√
n) = 1− α.

And so if we know the population standard deviation (σ), our

(1− α) confidence interval was

X̄ − zασ/
√
n ≤ µ ≤ x̄ + zασ/

√
n
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Finding zα
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You can use qnorm to find zα.
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Variance Unkown

This CI is valid only if the variance σ2 is known.

Most of the time, σ2 is not known.

If n is large enough, we can replace σ with s and the CI is still

approximately correct. Mainly because of the Law of the Large

Numbers

s2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2 −→
n→∞

σ2
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Variance Unknown

That is, for large n, we have

X̄ − µ
s/
√
n
≈ N(0, 1).

and so we find a zα such that

P

(
X̄ − µ
s/
√
n
∈ [−zα, zα]

)
= 1− α

Rearranging terms, we got

P(X̄ − zαs/
√
n ≤ µ ≤ x̄ + zαs/

√
n) = 1− α.
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t-based Confidence Intervals



Problem

However, for small n (rule of thumb n ≤ 30), this approximation is

not accurate! Not even when the X1,X2, . . . ,Xn are exactly

N(µ, σ2)!

Note:

To perform inference with small n, we will require that the Xi ’s

are well approximated by a normal distribution.

Recall that for X1,X2, . . . ,Xn, independent with Xi ∼ N(µ, σ2), we

have exactly

X̄ − µ
σ/
√
n
∼ N(0, 1).

But we want the distribution of

X̄ − µ
s/
√
n
.
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t-distribution

Theorem

X1,X2, . . . ,Xn, independent with Xi ∼ N(µ, σ2), then

X̄ − µ
s/
√
n
∼ tν ,

where tdf represents the t-distribution with ν degrees of freedom.

Here, ν = n − 1, one minus the sample size.
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Properties of t

(Unlike the Normal or Binomial distributions, each of which has

two parameters, the t-distribution has only one parameter, called

the degrees of freedom.)

• Symmetric about zero

• Bell-shaped - similar to normal distribution

• More spread out than normal - heavier tails

• Exact shape depends on the degrees of freedom

• As the number of degrees of freedom (ν) increases, the

t-distribution converges to the Normal distribution.

• ν must be greater than 0.
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t-shape
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Empirical Example

x_matrix <- replicate(1000, rnorm(10))

xbar <- colMeans(x_matrix)

s <- apply(x_matrix, 2, sd)

tstat <- xbar / (s / sqrt(10))
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qq-plot using normal quantiles

See heavier tails than expected under normal model

qqnorm(tstat)

qqline(tstat)
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Histogram of t-statistics

t-distribution fits better in the tails

Histogram of tstat
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Confidence intervals with unknown σ

The goal is to find a confidence interval for µ when σ is unknown.

That is, we want a random interval that captures µ in (1− α) of

repeated samples.

Since

X̄ − µ
s/
√
n
∼ tn−1,

we need to find a t∗ such that

P

(
X̄ − µ
s/
√
n
∈ [−t∗, t∗]

)
= 1− α,

15



Confidence intervals with unknown σ

• Rearranging terms, we have

P
(
X̄ − t∗s/

√
n, X̄ + t∗s/

√
n
)

= 1− α.

• So (X̄ − t∗s/
√
n, X̄ + t∗s/

√
n) is a (1− α) confidence

interval for the mean when σ is not known.

• You can use this for any sample size n, not just when n is

small.

• But it will approximately equal the normal-based CI when n is

large.

• These confidence intervals are again random. In addition to

having a random center X̄ , they have a random width

t∗S/
√
n.

• The t intervals are wider than the normal intervals because

the t distribution has larger tails. This corrects for uncertainty

in estimating σ. 16



How do you get t∗?

The critical value, t∗ = tn−1,α is chosen such that (100(1− α)% of

the area under the tn−1 density lies between −t∗ and t∗.
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You can use the R function qt to find t∗.
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Some notes on Approximation

1. If the underlying population is Normally distributed, the

interval is exact. (i.e. exact if X1,X2, . . . ,Xn are N(µ, σ2)).

2. Otherwise, the interval is approximately correct if n is not too

small (say, n ≥ 15), the data are not strongly skewed, and

there are no outliers.

3. With n sufficiently large (say n ≥ 30), the approximation is

correct even if the data are clearly skewed.

4. For small sample sizes, this motivates taking transformations

to make the data look more normal.
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Does this really matter?

Simulate 100 samples and calculate their corresponding normal
and t 95% confidence intervals:

mu <- 17

sigma2 <- 2

n <- 10

alpha <- 0.05

x_matrix <- replicate(100, rnorm(n, mu, sqrt(sigma2)))

xbar <- colMeans(x_matrix)

s <- apply(x_matrix, 2, sd)

z_alpha <- abs(qnorm(alpha / 2))

t_alpha <- abs(qt(alpha / 2, df = n - 1))

lower_z <- xbar - z_alpha * s / sqrt(n)

upper_z <- xbar + z_alpha * s / sqrt(n)

lower_t <- xbar - t_alpha * s / sqrt(n)

upper_t <- xbar + t_alpha * s / sqrt(n)
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Does this really matter?

Normal based intervals
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Does this really matter?

t based intervals
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t-tests



One t-tests

• We can also use the t-distribution for hypothesis testing.

• Suppose X1,X2, . . . ,Xn are independent N(µ, σ2) (e.g. from

an SRS of a population that is normal).

• We want to test

• H0: µ = µ0 versus

• HA: µ 6= µ0.

• Then we know under H0 that the test statistic

T =
X̄ − µ0

S/
√
n
,

has a t-distribution with n − 1 d.f.
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One sample t-tests

• The p-value for this test is the probablity that T is as extreme

or more exteme than our observed test statistic

t =
x̄ − µ0

s/
√
n
.

• For the two-sided alternative hypothesis HA: µ 6= µ0, we

calculate the two tail probabilities

2P(Tn−1 ≥ |t|).
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p-values
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This is equal to: 2 * pt(-abs(t), df = n - 1).
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One-sided alternative

For a one-sided alternative HA: µ > µ0, the p-value is

P(Tn−1 ≥ t).
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This is equal to: pt(t, df = n - 1, lower.tail = FALSE).
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one-sided alternative

For a one-sided alternative HA: µ < µ0, the p-value is

P(Tn−1 ≤ t).
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This is equal to: pt(t, df = n - 1).
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Tumor Growth Example: setup

• Let X (in mm) denote the growth in 15 days of a tumor

induced in a mouse. It is known from a previous experiment

that the average tumor growth is 4mm.

• A sample of 20 mice that have a genetic variant hypothesized

to be involved in tumor growth yielded x̄ = 3.8mm and

s = 0.3mm.

• Test whether µ = 4 or not, assuming growths are normally

distributed.
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Tumor Growth Example: solution

1. State the hypotheses:

H0 : µ = 4 versus HA : µ 6= 4.

2. Calculate the t-statistic

t =
x̄ − µ0

s/
√
n

=
3.8− 4.0

0.3/
√

20
= −2.98

3. Determine the p-value

p = 2P(T19 ≥ 2.98) = 0.008.
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Significance Level

• We could have chosen a significance level α ahead of time

(usually α = 0.05) and then reject H0 if our p-value fell below

this threshold. Ideally you choose this before running the

hypothesis test.

• E.g., we could reject H0 at level α = 0.01 and conclude that

the population mean growth is not 4mm.

• Note: Since we reject H0 if p ≤ α, the p-value has the

interpretation of being the smallest signficance level at which

we would reject H0.
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99% CI

• Remember the relationship between hypothesis testing and

confidence intervals?

• Let’s construct a 99% CI for µ:

(x̄ − t∗s/
√
n, x̄ + t∗s/

√
n)

= (3.8− 2.861× 0.3/
√

20, 3.8 + 2.861× 0.3/
√

20)

= (3.61, 3.99),

where t∗ : P(|T19 > t∗) = 0.01.

• Using abs(qt(0.005, df = 19)) in R, this is 2.8609.

• Note that 4 is outside this CI. From this, we can draw the

same conclusion as from the test. Namely, at significance level

α = 0.01, the mean growth is not equal to 4mm.
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Relationship between CI and hypothesis tests

• A two-sided hypothesis test with significance level α rejects

the null hypothesis H0 : µ = µ0 if and only if the value of µ0

falls outside the 100(1− α)% CI for µ.

• Reporting a CI is generally more informative than just

reporting a p-value or the decision made on the basis of a

hypothesis test since if tells the reader about your level of

uncertainty (MOE).
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One-sided alternatives

• In the previous example, suppose we wished to test µ < 4 as

our alternative.

1. State Hypotheses. H0 : µ = 4 versus HA : µ < 4.

2. Calculate the t-statistics. t = x̄−µ0

s/
√
n

= 3.8−4
0.3/
√

20
= −2.98.

3. Determine the p-value. p = P(T19 ≤ −2.98) =

pt(-2.98, df = 19) = 0.0038.

• Since 0.0038 = p ≤ α = 0.1, we reject H0 at significance level

0.01 and conclude that mean growth is less than 4mm.
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