Inference for Means in Small Samples

David Gerard 2017-11-01

- Introduce *t*-distribution.
- Cl's and testing using the *t*-distribution.
- Section 5.1 of DBC.

Review Normal-based Confidence Intervals

When we wanted a $(1 - \alpha)$ confidence interval for a mean, and we had a sample X_1, X_2, \ldots, X_n such that $E[X_i] = \mu$ and $var(X_i) = \sigma^2$, we used the fact that for large n

 $\bar{X} \approx N(\mu, \sigma^2/n).$

i.e. that

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}pprox {\sf N}(0,1).$$

Based on α , we found a z_{α} such that

$$P\left(rac{ar{X}-\mu}{\sigma/\sqrt{n}}\in [-z_{lpha},z_{lpha}]
ight)=1-lpha$$

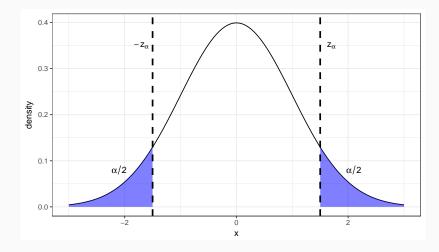
Rearranging terms, we got

$$P(\bar{X} - z_{\alpha}\sigma/\sqrt{n} \le \mu \le \bar{x} + z_{\alpha}\sigma/\sqrt{n}) = 1 - \alpha.$$

And so if we know the population standard deviation (σ), our $(1 - \alpha)$ confidence interval was

$$ar{X} - z_{lpha}\sigma/\sqrt{n} \le \mu \le ar{x} + z_{lpha}\sigma/\sqrt{n}$$

Finding z_{α}



You can use qnorm to find z_{α} .

This CI is valid only if the variance σ^2 is known.

Most of the time, σ^2 is not known.

If n is large enough, we can replace σ with s and the CI is still approximately correct. Mainly because of the Law of the Large Numbers

$$s^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 \underset{n o \infty}{\longrightarrow} \sigma^2$$

That is, for large n, we have

$$rac{ar{X}-\mu}{s/\sqrt{n}}pprox {\sf N}(0,1).$$

and so we find a z_{α} such that

$$P\left(rac{ar{X}-\mu}{s/\sqrt{n}}\in [-z_{lpha},z_{lpha}]
ight)=1-lpha$$

Rearranging terms, we got

$$P(\bar{X} - z_{\alpha}s/\sqrt{n} \le \mu \le \bar{x} + z_{\alpha}s/\sqrt{n}) = 1 - \alpha.$$

t-based Confidence Intervals

Problem

However, for small *n* (rule of thumb $n \le 30$), this approximation is not accurate! Not even when the X_1, X_2, \ldots, X_n are exactly $N(\mu, \sigma^2)!$

Note:

To perform inference with small n, we will require that the X_i 's are well approximated by a normal distribution.

Recall that for X_1, X_2, \ldots, X_n , independent with $X_i \sim N(\mu, \sigma^2)$, we have exactly

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1).$$

But we want the distribution of

$$rac{ar{X}-\mu}{s/\sqrt{n}}.$$

Theorem

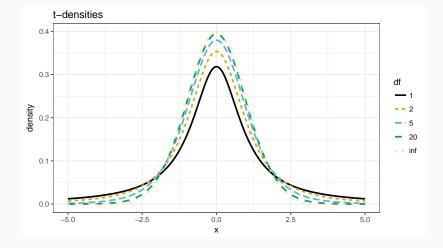
 X_1, X_2, \ldots, X_n , independent with $X_i \sim N(\mu, \sigma^2)$, then

$$rac{ar{X}-\mu}{s/\sqrt{n}}\sim t_{
u}$$

where t_{df} represents the t-distribution with ν degrees of freedom. Here, $\nu = n - 1$, one minus the sample size. (Unlike the Normal or Binomial distributions, each of which has two parameters, the *t*-distribution has only one parameter, called the degrees of freedom.)

- Symmetric about zero
- Bell-shaped similar to normal distribution
- More spread out than normal heavier tails
- Exact shape depends on the degrees of freedom
- As the number of degrees of freedom (ν) increases, the t-distribution converges to the Normal distribution.
- ν must be greater than 0.

t-shape

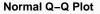


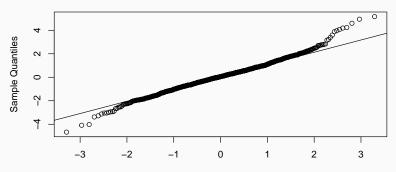
x_matrix	<- replicate(1000, rnorm(10))	
xbar	<- colMeans(x_matrix)	
S	<- apply(x_matrix, 2, sd)	
tstat	<- xbar / (s / sqrt(10))	

qq-plot using normal quantiles

See heavier tails than expected under normal model

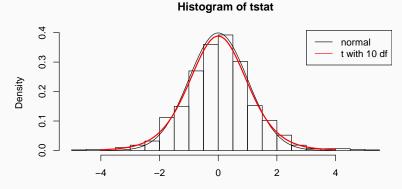
qqnorm(tstat)
qqline(tstat)





Theoretical Quantiles

t-distribution fits better in the tails



tstat

The goal is to find a confidence interval for μ when σ is unknown. That is, we want a random interval that captures μ in $(1 - \alpha)$ of repeated samples.

Since

$$\frac{\bar{X}-\mu}{s/\sqrt{n}}\sim t_{n-1},$$

we need to find a t^* such that

$$P\left(\frac{\bar{X}-\mu}{s/\sqrt{n}}\in\left[-t^*,t^*\right]\right)=1-\alpha,$$

Confidence intervals with unknown σ

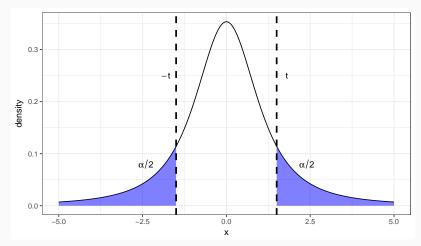
• Rearranging terms, we have

$$P\left(ar{X}-t^*s/\sqrt{n},ar{X}+t^*s/\sqrt{n}
ight)=1-lpha.$$

- So $(\bar{X} t^* s / \sqrt{n}, \bar{X} + t^* s / \sqrt{n})$ is a (1α) confidence interval for the mean when σ is not known.
- You can use this for any sample size *n*, not just when *n* is small.
- But it will approximately equal the normal-based CI when *n* is large.
- These confidence intervals are again random. In addition to having a random center \bar{X} , they have a random width t^*S/\sqrt{n} .
- The *t* intervals are wider than the normal intervals because the *t* distribution has larger tails. This corrects for uncertainty in estimating *σ*.

How do you get t^* ?

The critical value, $t^* = t_{n-1,\alpha}$ is chosen such that $(100(1 - \alpha))\%$ of the area under the t_{n-1} density lies between $-t^*$ and t^* .



You can use the R function qt to find t^* .

- If the underlying population is Normally distributed, the interval is exact. (i.e. exact if X₁, X₂,..., X_n are N(μ, σ²)).
- 2. Otherwise, the interval is approximately correct if n is not too small (say, $n \ge 15$), the data are not strongly skewed, and there are no outliers.
- 3. With n sufficiently large (say $n \ge 30$), the approximation is correct even if the data are clearly skewed.
- 4. For small sample sizes, this motivates taking transformations to make the data look more normal.

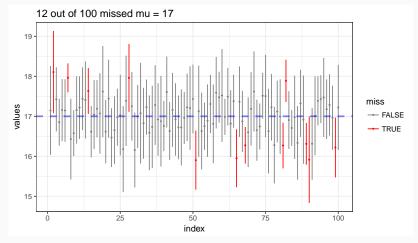
Does this really matter?

Simulate 100 samples and calculate their corresponding normal and t 95% confidence intervals:

mu	<- 17
sigma2	<- 2
n	<- 10
alpha	<- 0.05
x_matrix	<- replicate(100, rnorm(n, mu, sqrt(sigma2)))
xbar	<- colMeans(x_matrix)
S	<- apply(x_matrix, 2, sd)
z_alpha	<- abs(qnorm(alpha / 2))
t_alpha	<- abs(qt(alpha / 2, df = n - 1))
lower_z	<- xbar - z_alpha * s / sqrt(n)
upper_z	<- xbar + z_alpha * s / sqrt(n)
lower_t	<- xbar - t_alpha * s / sqrt(n)
upper_t	<- xbar + t_alpha * s / sqrt(n)

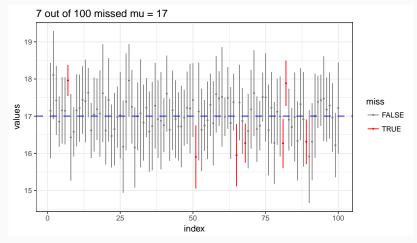
Does this really matter?

Normal based intervals



Does this really matter?

t based intervals



t-tests

- We can also use the *t*-distribution for hypothesis testing.
- Suppose X₁, X₂,..., X_n are independent N(μ, σ²) (e.g. from an SRS of a population that is normal).
- We want to test
 - H_0 : $\mu = \mu_0$ versus
 - H_A : $\mu \neq \mu_0$.
- Then we know under H_0 that the test statistic

$$T=\frac{\bar{X}-\mu_0}{S/\sqrt{n}},$$

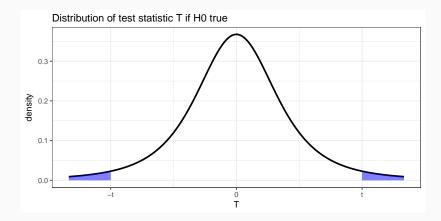
has a *t*-distribution with n - 1 d.f.

• The *p*-value for this test is the probablity that *T* is as extreme or more exteme than our observed test statistic

$$t=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}.$$

• For the two-sided alternative hypothesis H_A : $\mu \neq \mu_0$, we calculate the two tail probabilities

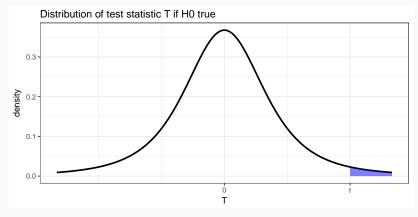
$$2P(T_{n-1}\geq |t|).$$



This is equal to: 2 * pt(-abs(t), df = n - 1).

One-sided alternative

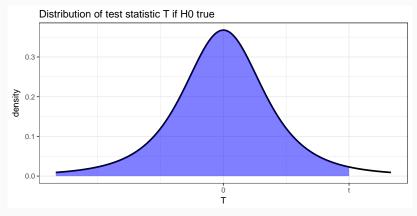
For a one-sided alternative H_A : $\mu > \mu_0$, the *p*-value is $P(T_{n-1} \ge t)$.



This is equal to: pt(t, df = n - 1, lower.tail = FALSE).

one-sided alternative

For a one-sided alternative H_A : $\mu < \mu_0$, the *p*-value is $P(T_{n-1} \leq t)$.



This is equal to: pt(t, df = n - 1).

- Let X (in mm) denote the growth in 15 days of a tumor induced in a mouse. It is known from a previous experiment that the average tumor growth is 4mm.
- A sample of 20 mice that have a genetic variant hypothesized to be involved in tumor growth yielded x
 = 3.8mm and s = 0.3mm.
- Test whether $\mu = 4$ or not, assuming growths are normally distributed.

1. State the hypotheses:

$$H_0: \mu = 4$$
 versus $H_A: \mu \neq 4$.

2. Calculate the *t*-statistic

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{3.8 - 4.0}{0.3/\sqrt{20}} = -2.98$$

3. Determine the *p*-value

$$p = 2P(T_{19} \ge 2.98) = 0.008.$$

- We could have chosen a significance level α ahead of time (usually $\alpha = 0.05$) and then reject H_0 if our *p*-value fell below this threshold. Ideally you choose this before running the hypothesis test.
- E.g., we could reject H_0 at level $\alpha = 0.01$ and conclude that the population mean growth is not 4mm.
- Note: Since we reject H₀ if p ≤ α, the p-value has the interpretation of being the smallest significance level at which we would reject H₀.

99% CI

- Remember the relationship between hypothesis testing and confidence intervals?
- Let's construct a 99% CI for μ :

$$egin{aligned} & (ar{x}-t^*s/\sqrt{n},ar{x}+t^*s/\sqrt{n}) \ &= (3.8-2.861 imes 0.3/\sqrt{20},3.8+2.861 imes 0.3/\sqrt{20}) \ &= (3.61,3.99), \end{aligned}$$

where t^* : $P(|T_{19} > t^*) = 0.01$.

- Using abs(qt(0.005, df = 19)) in R, this is 2.8609.
- Note that 4 is outside this CI. From this, we can draw the same conclusion as from the test. Namely, at significance level α = 0.01, the mean growth is not equal to 4mm.

- A two-sided hypothesis test with significance level α rejects the null hypothesis H₀ : μ = μ₀ if and only if the value of μ₀ falls outside the 100(1 - α)% CI for μ.
- Reporting a CI is generally more informative than just reporting a *p*-value or the decision made on the basis of a hypothesis test since if tells the reader about your level of uncertainty (MOE).

- In the previous example, suppose we wished to test μ < 4 as our alternative.
- 1. State Hypotheses. $H_0: \mu = 4$ versus $H_A: \mu < 4$.
- 2. Calculate the *t*-statistics. $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}} = \frac{3.8 4}{0.3/\sqrt{20}} = -2.98.$
- 3. Determine the *p*-value. $p = P(T_{19} \le -2.98) = pt(-2.98)$, df = 19) = 0.0038.
 - Since 0.0038 = p ≤ α = 0.1, we reject H₀ at significance level 0.01 and conclude that mean growth is less than 4mm.