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Learning Objectives

• Paired t-tests.

• Two-sample t-tests.

• Sections 5.2 and 5.3 in DBC.
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Paired Data



Matched Paired t-test

In a matched pairs study, there are 2 measurements taken on the

same subject (or on 2 similar subjects). For example,

• 2 rats from the same litter

• before and after observations on the same subject

• adjacent plots on a field

To conduct statistical inference on such a sample, we analyze the

difference using the one-sample procedures described above.
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Weight Data

library(tidyverse)

load(file="w.Rdata")

glimpse(weight)

Observations: 20

Variables: 4

$ Subject <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1...

$ weighta <int> 187, 175, 158, 160, 130, 170, 165, 1...

$ weightb <int> 160, 153, 150, 148, 127, 160, 150, 1...

$ difference <dbl> 27, 22, 8, 12, 3, 10, 15, -1, 10, 6,...

t=(mean(weight$difference)-0)/(sd(weight$difference)/sqrt(20))

p=1-pt(t,19)

c(t,p)

[1] 4.8842514 0.0000515
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Equivalent to single variable methods

diff_vec <- weight$weighta - weight$weightb

Now just perform inference on diff vec.
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Matched Paired t-test

To ascertain whether the diet reduces weight, we test

H0 : µ = 0 Ha : µ > 0

where µ is the mean weight difference.

xbar <- mean(diff_vec)

s <- sd(diff_vec)

n <- length(diff_vec)

tstat <- (xbar - 0) / (s / sqrt(n))

T -statistic: t = 9.35−0
8.56/

√
20

= 4.88
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Paired t-test
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Paired t-test

Zooming in
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Paired t-test

Zooming in
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p-value: p = P(t19 ≥ 4.8843) = 0.000052
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Unpaired data (Two-sample data)



Two sample problems

• The goal of two-sample inference is to compare the responses

in two groups.

• Each group is considered to be a sample from a distinct

population.

• The responses in each group are independent of those in the

other group (in addition to being independent of each other).

For example, Suppose we have a SRS of size n1 drawn from a

N(µ1, σ1) population and an independent SRS of size n2 drawn

from a N(µ2, σ2) population.

The first sample might be heights of male students and the second

heights of female students.

We might test H0 : µ1 = µ2 against Ha : µ1 6= µ2.
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Two sample problems

How is this different from the matched pairs design?

1. There is no matching of the units in two samples.

2. The two samples may be of different size.
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Comparing Two Means when σ’s are Known

Suppose we have a SRS of size n1 drawn from a N(µ1, σ1)

population (with sample mean x̄1) and an independent SRS of size

n2 drawn from a N(µ2, σ2) population (with sample mean x̄2).

Suppose σ1 and σ2 are known.

The two-sample z-statistic is

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∼ N(0, 1)

Why the denominator? Since the two samples are independent,

their averages are independent so:

var(X̄1 − X̄2) = var(X̄1) + var(X̄2) =
σ2
1

n1
+

σ2
2

n2
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Inference when σ’s are known

• A (1− α) CI for µ1 − µ2 is given by

(x̄1 − x̄2)± z∗

√
σ21
n1

+
σ22
n2

where z∗ : P(Z > z∗) = α/2.

• To test the hypothesis H0 : µ1 = µ2, we use

Z =
X̄1 − X̄2√
σ2
1

n1
+

σ2
2

n2

∼ N(0, 1) under H0

The p-value is calculated as before
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Comparing Two Means with σ’s Unknown

We define S2
1 = 1

n1

∑n1
i=1(X1,i − X̄1)2,S2

2 = 1
n2

∑n2
i=1(X2,i − X̄2)2.

The Two-sample t-statistic is

T =
(X̄1 − X̄2)− (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

∼̇ tν

The T statistic only has an approximate tν distribution with

ν = (w1+w2)2

w2
1 /(n1−1)+w2

2 /(n2−1)
, w1 = s21/n1, w2 = s22/n2.

This is called Satterthwaite’s approximation.
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Inference when σ’s are unknown

• A (1− α) CI for µ1 − µ2 is given by

(x̄1 − x̄2)± t∗

√
s21
n1

+
s22
n2
, where t∗ : P(Tν > α/2).

• To test the hypothesis H0 : µ1 = µ2, we use

T =
X̄1 − X̄2√
S2
1

n1
+

S2
2

n2

∼̇ tν under H0

The p-value is calculated as before.

Setting ν = min(n1 − 1, n2 − 1) is simpler and yields a more

conservative approximate procedure. That is, the CIs are longer

than the true CI and p-values are larger than the true p-values.
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Pooled two-sample t procedures

In the previous procedure, we assumed that σ1 6= σ2. What if we

have reason to believe σ1 = σ2 = σ (even though we don’t know

either value)?

We can gain information (i.e. power) by pooling the two samples

together for estimating the variance:

Sp =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

T =
(X̄1 − X̄2)− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

∼ t(n1+n2−2)

If the two populations are normal this is the exact distribution of

T .
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Inference for pooled two sample t tests

• A (1− α) CI for µ1 − µ2 is

(x̄1 − x̄2)± t∗sp

√
1

n1
+

1

n2

where t∗ : P(Tn1+n+2−2 > t∗) = α/2.

• To test the hypothesis H0 : µ1 = µ2, we use

T =
X̄1 − X̄2

Sp

√
1
n1

+ 1
n2

∼ t(n1+n2−2) under H0

The p-value is calculated as before.
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Example

Weight gains (in kg) of babies from birth to age one year are

measured. All babies weighed approximately the same at birth.

Group A 5 7 8 9 6 7 10 8 6

Group B 9 10 8 6 8 7 9

Assume that the samples are randomly selected from independent

normal populations. Is there any difference between the true

means of the two groups?

i) Assume σ1 = σ2 = 1.5 is known

ii) Assume σ1 and σ2 are unknown and unequal.

iii) Assume σ1 and σ2 are unknown but equal

State the hypothesis:

H0 : µ1 = µ2 Ha : µ1 6= µ2
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Observed Statistics

x̄1 = 7.33 x̄2 = 8.14

s1 = 1.58 s2 = 1.35

n1 = 9 n2 = 7
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Known variances

i) Assume σ1 = σ2 = 1.5 is known. Then, the two-sample z

statistic is

z =
x̄1 − x̄2√
σ2
1

n1
+

σ2
2

n2

=
x̄1 − x̄2

σ1

√
1
n1

+ 1
n2

=
7.33− 8.14

1.5×
√

1
9 + 1

7

= −1.07

The two-sided p-value is

2P(Z ≥ |z |) = 2P(Z ≥ 1.07) = 0.28

where Z ∼ N(0, 1).

So there is no difference between the true population mean of

these two group at the significance level 0.1.
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Known variances

A 90% confidence interval for µ1 − µ2 is:

(x̄1 − x̄2)± z∗

√
σ21
n1

+
σ22
n2

= (7.33− 8.14)± 1.645× 1.5×
√

1

9
+

1

7

= (−2.05 , 0.43)

As expected, the 90% confidence interval covers 0. Thus, we have

90% confidence that there is no difference between the true

population means.
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Unknown unequal variances

ii) Assume σ1 and σ2 are unknown and unequal. Then, the

two-sample t statistic is

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

=
7.33− 8.14√
1.582

9 + 1.352

7

= −1.10

The two-sided p-value is

2P(T ≥ |z |) = 2P(T ≥ 1.10) = 0.31

where T ∼ t6.
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Unknown unequal variances

A 90% confidence interval for µ1 − µ2 is given by

(x̄1 − x̄2)± t∗

√
s21
n1

+
s22
n2

= (7.33− 8.14)± 1.94×
√

1.582

9
+

1.352

7

= (−2.23 , 0.61)

where P(|T | < t∗) = 0.90. That is, P(T > t∗) = 0.05 or

t∗ = tν,.05.
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Unknown Equal variances

iii) Assume σ1 and σ2 are unknown but equal.

The pooled two-sample estimator of σ is

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

=

√
(9− 1)× 1.582 + (7− 1)× 1.352

9 + 7− 2

= 1.49

Thus, the pooled two-sample t statistic is

t =
x̄1 − x̄2

sp

√
1
n1

+ 1
n2

=
7.33− 8.14

1.49
√

1
9 + 1

7

= −1.08
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Unknown Equal variances

The two-sided p-value is given by

2P(T ≥ |t|) = 2P(T ≥ 1.08) = 0.30 where T ∼ t14.

A 90% confidence interval for µ1 − µ2 is

(x̄1 − x̄2)± t∗sp

√
1

n1
+

1

n2

= (7.33− 8.14)± 1.76× 1.49×
√

1

9
+

1

7

= (−2.12 , 0.51)

Where P(|T | < t∗) = 0.90. That is, P(T > t∗) = 0.05.
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How to actually do this in practice



Software

• It’s important to understand the logic of a procedure.

• But you don’t want to hard-code a t-test every time you need

one — this is a recipe for human error!

• Use t.test.

Set up data:

x <- c(5, 7, 8, 9, 6, 7, 10, 8, 6)

y <- c(9, 10, 8, 6, 8, 7, 9)
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Arguments

x a (non-empty) numeric vector of data values.

y an optional (non-empty) numeric of data values.

alternative

a character string specifying the alternative hypothesis,

must be one of ‘two.sided” (default), “greater” or

“less”. You can specify just the initial letter.

mu

a number indicating the true value of the mean

(or difference in means if you are performing

a two sample test).

paired a logical indicating whether you want a paired t-test.

var.equal

a logical variable indicating whether to treat the two

variances as being equal. If TRUE then the pooled

variance is used to estimate the variance otherwise the

Welch (or Satterthwaite) approximation to the degrees

of freedom is used.
25



Assume σ1 = σ2 = 1.5

• People never use two-sample z-tests in practice.

• So there isn’t a base R function that does this.

• Just hard-code this for HW and never do in practice.
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Assume σ1 and σ2 are unknown and unequal.

t.test(x = x, y = y, alternative = "two.sided",

var.equal = FALSE, conf.level = 0.9)

Welch Two Sample t-test

data: x and y

t = -1.1, df = 14, p-value = 0.3

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

-2.1004 0.4814

sample estimates:

mean of x mean of y

7.333 8.143
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The df

The degrees of freedom it actually used was not exactly 14, but

they used Satterthwaite’s approximation:

tout <- t.test(x = x, y = y, alternative = "two.sided",

var.equal = FALSE, conf.level = 0.9)

tout$parameter

df

13.84
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Assume σ1 and σ2 are unknown but equal

t.test(x = x, y = y, alternative = "two.sided",

var.equal = TRUE, conf.level = 0.9)

Two Sample t-test

data: x and y

t = -1.1, df = 14, p-value = 0.3

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

-2.1273 0.5082

sample estimates:

mean of x mean of y

7.333 8.143
29


	Paired Data
	Unpaired data (Two-sample data)
	How to actually do this in practice

