Multiple Linear Regression

David Gerard
2017-11-20

Learning Objectives

- Multiple linear regression (with testing/Cl's).
- Stepwise procedures.
- Model checking.
- Sections 8.1 through 8.3 in DBC

Multiple Linear Regression

Mario Data

```
library(openintro)
library(tidyverse)
data(marioKart)
glimpse(marioKart)
Observations: 143
Variables: 12
$ ID <dbl> 150377422259, 260483376854, 32043234...
$ duration <int> 3, 7, 3, 3, 1, 3, 1, 1, 3, 7, 1, 1, ...
$ nBids <int> 20, 13, 16, 18, 20, 19, 13, 15, 29, ...
$ cond <fctr> new, used, new, new, new, new, used...
$ startPr <dbl> 0.99, 0.99, 0.99, 0.99, 0.01, 0.99, ...
$ shipPr <dbl> 4.00, 3.99, 3.50, 0.00, 0.00, 4.00, ...
$ totalPr <dbl> 51.55, 37.04, 45.50, 44.00, 71.00, 4...
$ shipSp <fctr> standard, firstClass, firstClass, s.3.
$ sellerRate <int> 1580, 365, 998, 7, 820, 270144, 7284...
```


Mario Data

- totalPr: Total price, which equals the auction price plus the shipping price.
- cond: Game condition, either new or used.
- stockPhoto: Whether the auction feature photo was a stock photo or not. If the picture was used in many auctions, then it was called a stock photo.
- duration: Auction length, in days.
- wheels: Number of Wii wheels included in the auction. These are steering wheel attachments to make it seem as though you are actually driving in the game. When used with the controller, turning the wheel actually causes the character on screen to turn.

Create Indicator Variables

```
marioKart$cond_new <- (marioKart$cond == "new") * 1
marioKart$stock_photo <- (marioKart$stockPhoto == "yes") * 1
mario <- select(marioKart, totalPr, cond_new,
    stock_photo, duration, wheels)
head(mario)
    totalPr cond_new stock_photo duration wheels
\begin{tabular}{llllll}
1 & 51.55 & 1 & 1 & 3 & 1 \\
2 & 37.04 & 0 & 1 & 7 & 1 \\
3 & 45.50 & 1 & 0 & 3 & 1 \\
4 & 44.00 & 1 & 1 & 3 & 1 \\
5 & 71.00 & 1 & 1 & 1 & 2 \\
6 & 45.00 & 1 & 1 & 3 & 0
\end{tabular}
```

We have

- a single response variable y
- several predictor/explanatory variables x_{1}, \ldots, x_{p}

Data for multiple linear regression consist of the values of y and x_{1}, \ldots, x_{p} for n individuals. We write the data in the form:

Individual	Predictors				Response
i	x_{1}	x_{2}	\cdots	x_{p}	y
1	x_{11}	x_{12}	\cdots	$x_{1 p}$	y_{1}
2	x_{21}	x_{22}	\cdots	$x_{2 p}$	y_{2}
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
n	$x_{n 1}$	$x_{n 2}$	\cdots	$x_{n p}$	y_{n}

Following our principles of data analysis, we look first at each variable separately.

EDA

EDA

EDA

EDA

Correlations

round (cor(mario), digits $=2)$					
	totalPr	cond_new	stock_photo	duration	wheels
totalPr	1.00	0.13	-0.09	-0.04	0.33
cond_new	0.13	1.00	0.38	-0.48	0.43
stock_photo	-0.09	0.38	1.00	-0.37	0.07
duration	-0.04	-0.48	-0.37	1.00	-0.30
wheels	0.33	0.43	0.07	-0.30	1.00

EDA results

- It seems that marginally (i.e. just looking at one predictor at a time), price is positively associated with cond_new and wheels and perhaps negatively associated with stock_photo and duration, though these latter two relationships are possibly non-existant (a result of noise) or just weak.
- The predictors are also moderately correlated with each other.
- There is one huge outlier and a moderate outlier.

A first fit

```
lmout <- lm(totalPr ~ cond_new, data = mario)
summary(lmout)
```

Call:
lm(formula $=$ totalPr \sim cond_new, data $=$ mario)

Residuals:

Min	1Q Median	3Q	Max	
-18.17	-7.77	-3.15	1.86	279.36

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

(Intercept)	47.15	2.79	16.90	$<2 \mathrm{e}-16$
cond_new	6.62	4.34	1.52	0.13

Residual standard error: 25.6 on 141 degrees of freedom Multiple R-squared: 0.0162,Adjusted R-squared: 0.00924
F-statistic: 2.32 on 1 and 141 DF, p-value: 0.13

A first fit: without outlier

```
lmout <- lm(totalPr ~ cond_new, data = mario[-c(20, 65), ])
summary(lmout)
Call:
lm(formula = totalPr ~ cond_new, data = mario[-c(20, 65), ])
```

Residuals:

Min	1Q	Median	3Q	Max
-13.891	-5.831	0.129	4.129	22.149

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	42.871	0.814	52.67	$<2 \mathrm{e}-16$
cond_new	10.900	1.258	8.66	$1.1 \mathrm{e}-14$

Residual standard error: 7.37 on 139 degrees of freedom Multiple R-squared: 0.351 ,Adjusted R-squared: 0.346
F-statistic: 75 on 1 and 139 DF , p-value: $1.06 \mathrm{e}-14$

Uh Oh

- If you have outliers, the first thing to do is try to explain those outliers.
- The second thing to do is fit the model both with and without the outliers. Hopefully you get the same results.
- If the results change consult a statistician: they will either (1) fit a "robust" procedure (e.g. minimize the sum of absolution deviations rather than the sum of squared deviations) or (2) try to incorporate the outliers in the model.
- We'll just remove them for now.

$$
\text { mario <- mario }[-c(20,65),]
$$

Interpret

- New Mario Kart games tend to cost an average of $\$ 10.90$ more than used Mario Kart games on Ebay.
- The association is significant ($p \approx 1.1 \times 10^{-14}$).
- Don't confuse this with causation. E.g. new games come with more Wii wheels which could be what is actaully causing the increase in price.

Correlation vs Causation

SOUNDS LIKE THE CLASS HELPED.

Goals

- We will try to find associations between the response and each each predictor while controlling for the other predictors.
- This will still not allow us to make claims of causality.

Multiple Linear Regression

Multiple Linear Regression

A multiple linear regression model is a linear model with many predictors. In general, we write the model as

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}+\epsilon
$$

where p is the number of predictors and ϵ is some noise term (often assumed to be distributed $N\left(0, \sigma^{2}\right)$).

Interpretation

- Intro stat interpretation: β_{j} is the change in y for each unit change in x_{j} when holding all other predictors constant.
- Some statisticians think this sounds too causal, so they use more verbose language: β_{j} is the difference in the average y 's between two populations that are the same in every respect except that they differ by 1 in x_{j}.
- That is, we aren't changing x_{j}, we're just looking at two populations that have different x_{j} 's.

Wii example

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\epsilon
$$

Estimating the Regression Coefficients

The true population parameters $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ and σ are estimated from the data by the least squares method. That is, we minimize the residual sum of squares

$$
\begin{aligned}
\mathrm{SSE} & =\sum_{i=1}^{n}\left(e_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\hat{y}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i 1}-\cdots-b_{p} x_{i p}\right)^{2}
\end{aligned}
$$

Estimating the Variance

The estimator of σ^{2} is

$$
s^{2}=\frac{\mathrm{SSE}}{n-p-1}=\frac{\sum\left(e_{i}\right)^{2}}{n-p-1}
$$

where $n-p-1$ is the number of degrees of freedom.
Number of samples n minus the number of parameters $p+1$.

Mario Example

```lmout <- lm(totalPr ~ cond_new + stock_photo + duration + wheels, data = mario)```				
sumout <- summary(lmout)				
round (sumout\$coefficients, digits = 2)				
	Estimate	,	value	t1)
(Intercept)	36.21	1.51	23.92	0.00
cond_new	5.13	1.05	4.88	0.00
stock_photo	1.08	1.06	1.02	0.31
duration	-0.03	0.19	-0.14	0.89
wheels	7.29	0.55	13.13	0.00

## Fitted model and interpretation

$$
y_{i}=36.21+5.13 x_{1 i}+1.08 x_{2 i}+-0.03 x_{3 i}+7.29 x_{4 i}+\epsilon_{i} .
$$

- If game $i$ and game $j$ differ only in that game $i$ only has one more wheel than game $j$, then we would expect individual $i$ 's total price to be about 7.29 dollars more.


## Model Assumptions

- The sample is a SRS from the population

This can't be checked; this needs to be taken care of when the sample is drawn.

- There is a linear relationship in the population Checking this isn't as straightforward as with simple linear regression, but we should draw a plot of residuals vs. fitted values and check for any patterns.
- The standard deviation of the residuals is constant. Using the same plot as above, check for non-uniformity in the spread of residuals around the center line.
- The response varies Normally about the population regression line.
Check with a Normal quantile plot of the residuals.


## Inference for Regression Coefficients

A $95 \%$ confidence interval for $\beta_{j}$ is

$$
\hat{\beta}_{j} \pm t^{*} \operatorname{SE}\left(\hat{\beta}_{j}\right)
$$

where $t^{*}$ is the number such that $95 \%$ of the area of the $t_{n-p-1}$ distribution falls between $-t^{*}$ and $t^{*}$
To test the hypothesis

$$
H_{0}: \beta_{j}=0 \quad\left(\beta_{i} \quad \text { arbitrary for } i \neq j\right)
$$

compute the $t$-statistic

$$
T=\frac{\hat{\beta}_{j}}{\operatorname{SE}\left(\hat{\beta}_{j}\right)}
$$

## More on Testing

- the $p$-value for this test statistic is computed from the $t_{n-p-1}$ distribution
$\rightarrow$ for $H_{a}: \beta_{j}>0, p$-value is $P\left(t_{n-p-1}>T\right)$
$\rightarrow$ for $H_{a}: \beta_{j}<0, p$-value is $P\left(t_{n-p-1}<T\right)$
$\rightarrow$ for $H_{a}: \beta_{j} \neq 0, p$-value is $2 P\left(t_{n-p-1}>|T|\right)$
- if the regression model assumptions are true, testing $H_{0}: \beta_{j}=0$ corresponds to testing whether or not $x_{j}$ is a significant predictor of $y$, assuming all the other predictors are already in the model.


## ANOVA table for Multiple Regression

The basic ideas of the regression ANOVA table are the same in simple and multiple regression.
ANOVA expresses variation in the form of sums of squares. It breaks the total variation into two parts: SSR and SSE:

Source	SS	df
Regression (SSR)	$\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$	$p$
Residual (SSE)	$\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$	$n-p-1$
Total	$\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$	$n-1$
SST $=$ SSR + SSE		

## ANOVA Decomposition



The statistic

$$
R^{2}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}
$$

is the proportion of the variation of the response variable $y$ that is explained by the explanatory variables $x_{1}, x_{2}, \cdots, x_{p} . R^{2}$ is called the multiple correlation coefficient.

## Adjusted $R^{2}$

The $R^{2}$ increases with every additional predictor. This is a mathematical fact. But some predictors may not be particularly useful in the regression.
Use Adjusted- $R^{2}$ :
$R_{a d j}^{2}=1-\frac{\mathrm{SSE} /(n-p-1)}{\mathrm{SST} /(n-1)}$
Adjusted $R^{2}$ does not necessarily increase with more predictors.
The adjusted $R^{2}$ compares the estimated sigmas - the numerator in the fraction is $s$. The denominator is fixed. So if $s$ is smaller a model is better.

## Model Selection

## Model with duration

```
lmout1 <- lm(totalPr ~ cond_new + stock_photo +
 duration + wheels,
 data = mario)
sumout1 <- summary(lmout1)
sumout1\$adj.r.squared
[1] 0.7108
```


## Model without duration

```
lmout2 <- lm(totalPr ~ cond_new + stock_photo +
 wheels,
 data \(=\) mario)
```

sumout2 <- summary(lmout2)
sumout2\$adj.r.squared
[1] 0.7128

## Bigger model isn't always the best!

- The estimated proportion of variance explained by the second model is larger than from the first.
- Intuition: duration has no affect on price so our model fruitlessly works too hard to estimate it's effect.
- So we should prefer this second (simpler) model without duration.


## Backwards Elimination

- Fit the "full" model (that with every predictor included).
- Remove the predictor that results in the greatest increase in adjusted $R^{2}$.
- Keep removing predictors in this way until you cannot increase $R^{2}$.


## Backwards Elimination

Iteration 1
Model
Full
adjusted $R^{2}$
0.711
No cond_new
0.663
No stock_photo
0.711
No duration
0.713
No wheels
0.349

## Backwards Elimination

Iteration 1
Model
Full
adjusted $R^{2}$
0.711
No cond_new
0.663
No stock_photo
0.711
No duration
0.713
No wheels
0.349

## Backwards Elimination

Iteration 2
Model
No duration
adjusted $R^{2}$
0.713

No duration and no cond_new
0.659

No duration and no stock_photo 0.712
No duration and no wheels 0.341

- No increase in adjusted $R^{2}$, so stop with this model.


## Final Model

lmout <- lm(totalPr $\sim$ cond_new + stock_photo + wheels,
data = mario)
sumout <- summary(lmout)
round (sumout \$coefficients, digits $=2)$
Estimate Std. Error t value Pr (>|t|)
(Intercept)
cond_new

The final model is
total $\operatorname{Pr}=36.1+5.2$ cond_new +1.1 stock_photo +7.3 wheels + error.

## Other methods of backwards elmination

- There are other statistics you can use to do backwards elimination (e.g. based on $p$-values).
- R uses something called AIC.

```
full_model <- lm(totalPr ~ cond_new + stock_photo +
 duration + wheels, data = mario)
backout <- step(full_model, direction = "backward",
 trace = FALSE)
```


## Backwards Elimination Results

backout

Call:
lm(formula $=$ totalPr ~ cond_new + wheels, data = mario)

Coefficients:
(Intercept)
36.78
cond_new
5.58
wheels
7.23

## Forward Selection

- Start with the model including just the intercept term and keep adding predictors until you can't increase the $R^{2}$ (or AIC or decrease the $p$-values, etc.)

```
base_model <- lm(totalPr ~ 1, data = mario)
full_model <- lm(totalPr ~ cond_new + stock_photo +
 duration + wheels, data = mario)
forout <- step(object = base_model,
 scope = list(lower = base_model,
 upper= full_model),
 direction = "forward",
 trace = FALSE)
```


## Forward Selection Results

forout

Call:
lm(formula $=$ totalPr $\sim$ wheels + cond_new, data = mario)

Coefficients:

(Intercept)	wheels	cond_new
36.78	7.23	5.58

## Checking fit

## Normality Assumption

Error term is nearly normal.

- This is less important for large $n$ if all you want is to estimate/infer the $\beta_{j}$ 's. This follows from the CLT.
- This assumption is super important for prediction intervals.
- You can check that the residuals are nearly normal.
- Use qq-plots.


## Nearly normal

```
lmout <- lm(totalPr ~ cond_new + stock_photo +
 wheels, data = mario)
residuals <- resid(lmout)
qqnorm(residuals)
qqline(residuals)
```


## Normal Q-Q Plot



## Other Assumptions

- Variability of error term is nearly constant.
- Error terms are independent.
- The book says that the "residuals are independent". This is very wrong (why?).
- Each variable is linearly related to the outcome.


## Testing these assumptions

To test these assumptions, plot the residuals against:

- the predictors,
- the absolute value of the responses,
- the absolute value of the fitted responses, and
- the ordering of the observations.

If you don't see anything pattern, then the model assumptions are looking pretty good.

## Simulated Data 1

Example of Non-linear relationship:


## Simulated Data 2

Example of Non-constant Variance:


## Mario Resids

Resids vs Fits

```
lmout <- lm(totalPr ~ cond_new + stock_photo +
 wheels, data = mario)
residuals <- resid(lmout)
fits <- predict(lmout)
plot(abs(fits), residuals)
```



## Mario Resids

Resids vs $y$.
plot(abs(mario\$totalPr), residuals)


## Mario Resids

Resids vs order.
plot(residuals)


## Mario Resids

Resids vs cond_new.
plot(mario\$cond_new, residuals)


## Mario Resids

Resids vs wheels.
plot(mario\$wheels, residuals)


## Mario Resids

Resids vs stock_photo.
plot(mario\$stock_photo, residuals)


## Conclusions

- Some possible problems.
- Doesn't look too bad, but could look better.

Intuition behind Indicator Variables



## Different Intercepts

price $=\beta_{0}+\beta_{1}$ cond_new $+\beta_{2}$ wheels + error.


## Color Code Residuals

Model with just wheels


## Color Code Residuals

Model with wheels and cond_new


## Different Slopes and Intercepts

price $=\beta_{0}+\beta_{1}$ cond_new $+\beta_{2}$ wheels $+\beta_{3}$ cond_new $\times$ wheels + error.


