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Learning Objectives

• Multiple linear regression (with testing/CI’s).

• Stepwise procedures.

• Model checking.

• Sections 8.1 through 8.3 in DBC
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Multiple Linear Regression



Mario Data

library(openintro)

library(tidyverse)

data(marioKart)

glimpse(marioKart)

Observations: 143

Variables: 12

$ ID <dbl> 150377422259, 260483376854, 32043234...

$ duration <int> 3, 7, 3, 3, 1, 3, 1, 1, 3, 7, 1, 1, ...

$ nBids <int> 20, 13, 16, 18, 20, 19, 13, 15, 29, ...

$ cond <fctr> new, used, new, new, new, new, used...

$ startPr <dbl> 0.99, 0.99, 0.99, 0.99, 0.01, 0.99, ...

$ shipPr <dbl> 4.00, 3.99, 3.50, 0.00, 0.00, 4.00, ...

$ totalPr <dbl> 51.55, 37.04, 45.50, 44.00, 71.00, 4...

$ shipSp <fctr> standard, firstClass, firstClass, s...

$ sellerRate <int> 1580, 365, 998, 7, 820, 270144, 7284...

$ stockPhoto <fctr> yes, yes, no, yes, yes, yes, yes, y...

$ wheels <int> 1, 1, 1, 1, 2, 0, 0, 2, 1, 1, 2, 2, ...

$ title <fctr> ~~ Wii MARIO KART &amp; WHEEL ~ NIN...
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Mario Data

• totalPr: Total price, which equals the auction price plus the

shipping price.

• cond: Game condition, either new or used.

• stockPhoto: Whether the auction feature photo was a stock

photo or not. If the picture was used in many auctions, then

it was called a stock photo.

• duration: Auction length, in days.

• wheels: Number of Wii wheels included in the auction.

These are steering wheel attachments to make it seem as

though you are actually driving in the game. When used with

the controller, turning the wheel actually causes the character

on screen to turn.
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Create Indicator Variables

marioKart$cond_new <- (marioKart$cond == "new") * 1

marioKart$stock_photo <- (marioKart$stockPhoto == "yes") * 1

mario <- select(marioKart, totalPr, cond_new,

stock_photo, duration, wheels)

head(mario)

totalPr cond_new stock_photo duration wheels

1 51.55 1 1 3 1

2 37.04 0 1 7 1

3 45.50 1 0 3 1

4 44.00 1 1 3 1

5 71.00 1 1 1 2

6 45.00 1 1 3 0
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set up

We have

• a single response variable y

• several predictor/explanatory variables x1, . . . , xp

Data for multiple linear regression consist of the values of y and

x1, . . . , xp for n individuals. We write the data in the form:

Individual Predictors Response

i x1 x2 · · · xp y

1 x11 x12 · · · x1p y1

2 x21 x22 · · · x2p y2
...

...
...

. . .
...

...

n xn1 xn2 · · · xnp yn
Following our principles of data analysis, we look first at each

variable separately.
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Correlations

round(cor(mario), digits = 2)

totalPr cond_new stock_photo duration wheels

totalPr 1.00 0.13 -0.09 -0.04 0.33

cond_new 0.13 1.00 0.38 -0.48 0.43

stock_photo -0.09 0.38 1.00 -0.37 0.07

duration -0.04 -0.48 -0.37 1.00 -0.30

wheels 0.33 0.43 0.07 -0.30 1.00
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EDA results

• It seems that marginally (i.e. just looking at one predictor at a

time), price is positively associated with cond new and

wheels and perhaps negatively associated with stock photo

and duration, though these latter two relationships are

possibly non-existant (a result of noise) or just weak.

• The predictors are also moderately correlated with each other.

• There is one huge outlier and a moderate outlier.
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A first fit

lmout <- lm(totalPr ~ cond_new, data = mario)

summary(lmout)

Call:

lm(formula = totalPr ~ cond_new, data = mario)

Residuals:

Min 1Q Median 3Q Max

-18.17 -7.77 -3.15 1.86 279.36

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 47.15 2.79 16.90 <2e-16

cond_new 6.62 4.34 1.52 0.13

Residual standard error: 25.6 on 141 degrees of freedom

Multiple R-squared: 0.0162,Adjusted R-squared: 0.00924

F-statistic: 2.32 on 1 and 141 DF, p-value: 0.13 13



A first fit: without outlier

lmout <- lm(totalPr ~ cond_new, data = mario[-c(20, 65), ])

summary(lmout)

Call:

lm(formula = totalPr ~ cond_new, data = mario[-c(20, 65), ])

Residuals:

Min 1Q Median 3Q Max

-13.891 -5.831 0.129 4.129 22.149

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.871 0.814 52.67 < 2e-16

cond_new 10.900 1.258 8.66 1.1e-14

Residual standard error: 7.37 on 139 degrees of freedom

Multiple R-squared: 0.351,Adjusted R-squared: 0.346

F-statistic: 75 on 1 and 139 DF, p-value: 1.06e-14 14



Uh Oh

• If you have outliers, the first thing to do is try to explain those

outliers.

• The second thing to do is fit the model both with and without

the outliers. Hopefully you get the same results.

• If the results change consult a statistician: they will either (1)

fit a “robust” procedure (e.g. minimize the sum of absolution

deviations rather than the sum of squared deviations) or (2)

try to incorporate the outliers in the model.

• We’ll just remove them for now.

mario <- mario[-c(20, 65), ]
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Interpret

• New Mario Kart games tend to cost an average of $10.90

more than used Mario Kart games on Ebay.

• The association is significant (p ≈ 1.1× 10−14).

• Don’t confuse this with causation. E.g. new games come with

more Wii wheels which could be what is actaully causing the

increase in price.
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Correlation vs Causation
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Goals

• We will try to find associations between the response and

each each predictor while controlling for the other predictors.

• This will still not allow us to make claims of causality.
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Multiple Linear Regression

Multiple Linear Regression

A multiple linear regression model is a linear model with many

predictors. In general, we write the model as

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε,

where p is the number of predictors and ε is some noise term

(often assumed to be distributed N(0, σ2)).
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Interpretation

• Intro stat interpretation: βj is the change in y for each unit

change in xj when holding all other predictors constant.

• Some statisticians think this sounds too causal, so they use

more verbose language: βj is the difference in the average y ’s

between two populations that are the same in every respect

except that they differ by 1 in xj .

• That is, we aren’t changing xj , we’re just looking at two

populations that have different xj ’s.
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Wii example

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε.
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Estimating the Regression Coefficients

The true population parameters β0, β1, . . . , βp and σ are estimated

from the data by the least squares method. That is, we minimize

the residual sum of squares

SSE =
n∑

i=1

(ei )
2

=
n∑

i=1

(yi − ŷ)2

=
n∑

i=1

(yi − b0 − b1xi1 − · · · − bpxip)2
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Estimating the Variance

The estimator of σ2 is

s2 =
SSE

n − p − 1
=

∑
(ei )

2

n − p − 1

where n − p − 1 is the number of degrees of freedom.

Number of samples n minus the number of parameters p + 1.
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Mario Example

lmout <- lm(totalPr ~ cond_new + stock_photo +

duration + wheels,

data = mario)

sumout <- summary(lmout)

round(sumout$coefficients, digits = 2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.21 1.51 23.92 0.00

cond_new 5.13 1.05 4.88 0.00

stock_photo 1.08 1.06 1.02 0.31

duration -0.03 0.19 -0.14 0.89

wheels 7.29 0.55 13.13 0.00
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Fitted model and interpretation

yi = 36.21 + 5.13x1i + 1.08x2i +−0.03x3i + 7.29x4i + εi .

• If game i and game j differ only in that game i only has one

more wheel than game j , then we would expect individual i ’s

total price to be about 7.29 dollars more.
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Model Assumptions

• The sample is a SRS from the population

This can’t be checked; this needs to be taken care of when

the sample is drawn.

• There is a linear relationship in the population

Checking this isn’t as straightforward as with simple linear

regression, but we should draw a plot of residuals vs. fitted

values and check for any patterns.

• The standard deviation of the residuals is constant.

Using the same plot as above, check for non-uniformity in the

spread of residuals around the center line.

• The response varies Normally about the population regression

line.

Check with a Normal quantile plot of the residuals.
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Inference for Regression Coefficients

A 95% confidence interval for βj is

β̂j ± t∗SE(β̂j)

where t∗ is the number such that 95% of the area of the tn−p−1

distribution falls between −t∗ and t∗

To test the hypothesis

H0 : βj = 0 (βi arbitrary for i 6= j)

compute the t-statistic

T =
β̂j

SE(β̂j)
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More on Testing

• the p-value for this test statistic is computed from the tn−p−1

distribution

→ for Ha : βj > 0, p-value is P(tn−p−1 > T )

→ for Ha : βj < 0, p-value is P(tn−p−1 < T )

→ for Ha : βj 6= 0, p-value is 2P(tn−p−1 > |T |)
• if the regression model assumptions are true, testing

H0 : βj = 0 corresponds to testing whether or not xj is a

significant predictor of y , assuming all the other predictors are

already in the model.
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ANOVA table for Multiple Regression

The basic ideas of the regression ANOVA table are the same in

simple and multiple regression.

ANOVA expresses variation in the form of sums of squares. It

breaks the total variation into two parts: SSR and SSE:

Source SS df

Regression (SSR)
∑n

i=1(ŷi − ȳ)2 p

Residual (SSE)
∑n

i=1(yi − ŷi )
2 n − p − 1

Total
∑n

i=1(yi − ȳ)2 n − 1

SST = SSR + SSE
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ANOVA Decomposition
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R2

The statistic

R2 = 1− SSE

SST
=

SSR

SST
=

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

is the proportion of the variation of the response variable y that is

explained by the explanatory variables x1, x2, · · · , xp. R2 is called

the multiple correlation coefficient.
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Adjusted R2

The R2 increases with every additional predictor. This is a

mathematical fact. But some predictors may not be particularly

useful in the regression.

Use Adjusted-R2 :

R2
adj = 1− SSE/(n−p−1)

SST/(n−1)

Adjusted R2 does not necessarily increase with more predictors.

The adjusted R2 compares the estimated sigmas - the numerator

in the fraction is s. The denominator is fixed. So if s is smaller a

model is better.
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Model Selection



Model with duration

lmout1 <- lm(totalPr ~ cond_new + stock_photo +

duration + wheels,

data = mario)

sumout1 <- summary(lmout1)

sumout1$adj.r.squared

[1] 0.7108
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Model without duration

lmout2 <- lm(totalPr ~ cond_new + stock_photo +

wheels,

data = mario)

sumout2 <- summary(lmout2)

sumout2$adj.r.squared

[1] 0.7128
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Bigger model isn’t always the best!

• The estimated proportion of variance explained by the second

model is larger than from the first.

• Intuition: duration has no affect on price so our model

fruitlessly works too hard to estimate it’s effect.

• So we should prefer this second (simpler) model without

duration.
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Backwards Elimination

• Fit the “full” model (that with every predictor included).

• Remove the predictor that results in the greatest increase in

adjusted R2.

• Keep removing predictors in this way until you cannot increase

R2.
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Backwards Elimination

Iteration 1
Model adjusted R2

Full 0.711

No cond new 0.663

No stock photo 0.711

No duration 0.713

No wheels 0.349
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Backwards Elimination

Iteration 2
Model adjusted R2

No duration 0.713

No duration and no cond new 0.659

No duration and no stock photo 0.712

No duration and no wheels 0.341

• No increase in adjusted R2, so stop with this model.
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Final Model

lmout <- lm(totalPr ~ cond_new + stock_photo + wheels,

data = mario)

sumout <- summary(lmout)

round(sumout$coefficients, digits = 2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.05 0.97 36.99 0.00

cond_new 5.18 1.00 5.20 0.00

stock_photo 1.12 1.02 1.10 0.27

wheels 7.30 0.54 13.40 0.00

The final model is

totalPr = 36.1 + 5.2cond new + 1.1stock photo + 7.3wheels + error.
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Other methods of backwards elmination

• There are other statistics you can use to do backwards

elimination (e.g. based on p-values).

• R uses something called AIC.

full_model <- lm(totalPr ~ cond_new + stock_photo +

duration + wheels, data = mario)

backout <- step(full_model, direction = "backward",

trace = FALSE)
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Backwards Elimination Results

backout

Call:

lm(formula = totalPr ~ cond_new + wheels, data = mario)

Coefficients:

(Intercept) cond_new wheels

36.78 5.58 7.23

41



Forward Selection

• Start with the model including just the intercept term and

keep adding predictors until you can’t increase the R2 (or AIC

or decrease the p-values, etc.)

base_model <- lm(totalPr ~ 1, data = mario)

full_model <- lm(totalPr ~ cond_new + stock_photo +

duration + wheels, data = mario)

forout <- step(object = base_model,

scope = list(lower = base_model,

upper= full_model),

direction = "forward",

trace = FALSE)
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Forward Selection Results

forout

Call:

lm(formula = totalPr ~ wheels + cond_new, data = mario)

Coefficients:

(Intercept) wheels cond_new

36.78 7.23 5.58
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Checking fit



Normality Assumption

Error term is nearly normal.

• This is less important for large n if all you want is to

estimate/infer the βj ’s. This follows from the CLT.

• This assumption is super important for prediction intervals.

• You can check that the residuals are nearly normal.

• Use qq-plots.
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Nearly normal

lmout <- lm(totalPr ~ cond_new + stock_photo +

wheels, data = mario)

residuals <- resid(lmout)

qqnorm(residuals)

qqline(residuals)
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Other Assumptions

• Variability of error term is nearly constant.

• Error terms are independent.

• The book says that the “residuals are independent”. This is

very wrong (why?).

• Each variable is linearly related to the outcome.
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Testing these assumptions

To test these assumptions, plot the residuals against:

• the predictors,

• the absolute value of the responses,

• the absolute value of the fitted responses, and

• the ordering of the observations.

If you don’t see anything pattern, then the model assumptions are

looking pretty good.
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Simulated Data 1

Example of Non-linear relationship:
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Simulated Data 2

Example of Non-constant Variance:
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Mario Resids

Resids vs Fits

lmout <- lm(totalPr ~ cond_new + stock_photo +

wheels, data = mario)

residuals <- resid(lmout)

fits <- predict(lmout)

plot(abs(fits), residuals)
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Mario Resids

Resids vs y .

plot(abs(mario$totalPr), residuals)
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Mario Resids

Resids vs order.

plot(residuals)
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Mario Resids

Resids vs cond new.

plot(mario$cond_new, residuals)
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Mario Resids

Resids vs wheels.

plot(mario$wheels, residuals)
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Mario Resids

Resids vs stock photo.

plot(mario$stock_photo, residuals)

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10
15

mario$stock_photo

re
si

du
al

s

55



Conclusions

• Some possible problems.

• Doesn’t look too bad, but could look better.
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Intuition behind Indicator Variables



totalPr vs cond new and wheels
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totalPr vs cond new and wheels
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Different Intercepts

price = β0 + β1cond new + β2wheels + error.
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Color Code Residuals
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Color Code Residuals
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Different Slopes and Intercepts

price = β0 +β1cond new +β2wheels +β3cond new×wheels + error.
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