
01 Exploratory Data Analysis and Introduction
to R

David Gerard
2018-12-07

1

Learning Objectives

• Gain a basic grasp of R
• Understand common graphical and numerical summaries.
• Section 1.5 in Statistical Sleuth.

2

Motivation

Motivation

In this class, you will be introduced to the R statistical language, a
programming language designed to analyze data. There are lots of
point-and-click statistical programs out there, so why learn R?

3

Motivation

1. It’s free.
• You will always have access to R.
• Not true for other statistical softwares (SPSS, STATA, SAS).

2. It’s widely used.
• If you need to do some special analysis, someone has probably

already made an R package for it.
• Just use Google to check.

3. It’s easy (especially graphics).
4. It makes reproducible research easy.

• When part of the pipeline is copying and pasting excel
spreadsheets, people make mistakes.

• E.g. an excel mistake led countries to adopt austerity measures
to increase economic growth.

• In R, you can automate your analysis, reducing the chance for
mistakes and making your analysis transparent to the wider
research community.

4

https://www.peri.umass.edu/fileadmin/pdf/working_papers/working_papers_301-350/WP322.pdf

Motivation

1. It’s free.
• You will always have access to R.
• Not true for other statistical softwares (SPSS, STATA, SAS).

2. It’s widely used.
• If you need to do some special analysis, someone has probably

already made an R package for it.
• Just use Google to check.

3. It’s easy (especially graphics).
4. It makes reproducible research easy.

• When part of the pipeline is copying and pasting excel
spreadsheets, people make mistakes.

• E.g. an excel mistake led countries to adopt austerity measures
to increase economic growth.

• In R, you can automate your analysis, reducing the chance for
mistakes and making your analysis transparent to the wider
research community.

4

https://www.peri.umass.edu/fileadmin/pdf/working_papers/working_papers_301-350/WP322.pdf

Motivation

1. It’s free.
• You will always have access to R.
• Not true for other statistical softwares (SPSS, STATA, SAS).

2. It’s widely used.
• If you need to do some special analysis, someone has probably

already made an R package for it.
• Just use Google to check.

3. It’s easy (especially graphics).

4. It makes reproducible research easy.
• When part of the pipeline is copying and pasting excel

spreadsheets, people make mistakes.
• E.g. an excel mistake led countries to adopt austerity measures

to increase economic growth.
• In R, you can automate your analysis, reducing the chance for

mistakes and making your analysis transparent to the wider
research community.

4

https://www.peri.umass.edu/fileadmin/pdf/working_papers/working_papers_301-350/WP322.pdf

Motivation

1. It’s free.
• You will always have access to R.
• Not true for other statistical softwares (SPSS, STATA, SAS).

2. It’s widely used.
• If you need to do some special analysis, someone has probably

already made an R package for it.
• Just use Google to check.

3. It’s easy (especially graphics).
4. It makes reproducible research easy.

• When part of the pipeline is copying and pasting excel
spreadsheets, people make mistakes.

• E.g. an excel mistake led countries to adopt austerity measures
to increase economic growth.

• In R, you can automate your analysis, reducing the chance for
mistakes and making your analysis transparent to the wider
research community. 4

https://www.peri.umass.edu/fileadmin/pdf/working_papers/working_papers_301-350/WP322.pdf

Basic R

The most important function i

I cannot teach you everything there is to know in R. When you
know the name of a function, but don’t know the commands, use
the help function. For example, to learn more about sum type

help(sum)

Alternatively, if you do not know the name of the function, you can
Google the functionality you want. Googling coding solutions is a
lot of what real programmers do.

5

Example Basic R commands

• When you first invoke R, it opens the R workspace with an
open R Console.

• RStudio is similar but in addition to the Console, RStudio
provides two other views, the Environment window, which gives
a listing of any variables created in your R workspace, and the
Files windows, which shows your working directory.

• Commands are entered at the command prompt, >, and results
are displayed in the same window.

• Try the following commands by typing them directly into the
Console window at the command prompt.

• Note that anything following # is a comment, which is ignored
by R.

6

Example Basic R commands

• When you first invoke R, it opens the R workspace with an
open R Console.

• RStudio is similar but in addition to the Console, RStudio
provides two other views, the Environment window, which gives
a listing of any variables created in your R workspace, and the
Files windows, which shows your working directory.

• Commands are entered at the command prompt, >, and results
are displayed in the same window.

• Try the following commands by typing them directly into the
Console window at the command prompt.

• Note that anything following # is a comment, which is ignored
by R.

6

Basic R Commands Continued i

2 + 4

[1] 6

<- is the “assignment” operator.

x <- 20

For the most part, you can also just use the = sign. But R experts
tend to prefer <-.

y = 82
x + y

[1] 102

7

Basic R Commands Continued ii

x - y ## This is a comment

[1] -62

x * y

[1] 1640

x / y

[1] 0.2439

exp(x) # exp is the built in exponential function

[1] 485165195

8

Basic R Commands Continued iii

sin(x) # similarly for sine

[1] 0.9129

log(y) # and the logarithm functions

[1] 4.407

z <- "a string variable"
z

[1] "a string variable"

9

Basic R Commands Continued iv

Notice that the second, third, and 2nd to last lines do not produce
any output. These lines are storing the values of 20, 82, and “a
string variable” in the variables x, y, and z, respectively.

R Tip: Type your commands in a “script” file so that you can save
them for later reference. In RStudio, go to the File menu and select
New File and then R Script. This will open an empty editor window
within RStudio. You can type the commands in the editor and run
them by hitting CTRL+ENTER in RStudio (CTRL+R in plain R).

10

Running Code i

1. Place your cursor on the line you want to run and either press
CTRL+ENTER (using the Windows version of RStudio, it is
Command+Enter on a Mac) or click on the Run command in
the script source code window:

2. Highlight all of the lines you want to run (by left clicking on
them with the mouse) and either press CTRL+ENTER or click
on the Run command in the script source code window.

Note that the code stops running when there is an error. Errors
(and other information) are given in the Console window in red.

11

Entering Data Manually i

The c() function concatenates the list of
values into a vector
x <- c(1,2,8,10,18,23,36)

x # displays the contents of x

[1] 1 2 8 10 18 23 36

x[3] # displays the 3rd element of x

[1] 8

x[1:3] # displays the first 3 elements of x

[1] 1 2 8

12

Entering Data Manually ii

x[c(2,4)] # displays the 2nd and 4th elements of x

[1] 2 10

create a new variable which
is a function of x
y <- 36 * x - x ^ 2

puts x and y together for easier
viewing in a matrix
cbind(x, y)

13

Entering Data Manually iii

x y
[1,] 1 35
[2,] 2 68
[3,] 8 224
[4,] 10 260
[5,] 18 324
[6,] 23 299
[7,] 36 0

puts them together for easier
viewing in a data frame
data.frame(x,y)

14

Entering Data Manually iv

x y
1 1 35
2 2 68
3 8 224
4 10 260
5 18 324
6 23 299
7 36 0

15

Echoing

Notice that each line you run is “echoed” (i.e. shows up) in the
Console window as text along with any resulting output the
command generates. If there is no output, then it will only show the
command.

16

Set Working Directory i

1. Using menu navigation:

Session > Set Working Directory > To Source File Location

2. Using code:

setwd("~/Dropbox/teaching/stat_514/514_notes/01_introduction_to_R/")

Note that you will need to edit the location (“~/Dropbox/”) to
match where your data are located on your specific computer. In
the Anderson Labs, data is typically saved to the Desktop or in a
local user file directory.

Tip: I tend to use code so that I and others can completely
reproduce an analysis.

17

Entering Data from Files

• Most datasets in this class will either be .rdata or .csv or
.txt files.

• Open .rdata files with load()
• Open .csv files with read.csv()
• Open .txt files with read.table()

18

Blood Alcohol Data

bloodalc <- read.csv("../data/BLOODALC.csv")

19

Entering Data from Packages

• Some R packages come with datasets.
• The Statistical Sleuth has its own R package with all of the

case studies.
• You first load the package using library(), then access the

data using data().
• You can see a list of all the datasets (and functions) available

in a package with library(help = "packagename"), where
“packagename” is the name of the package you want to explore.

20

Sleuth

install.packages("Sleuth3")

library(Sleuth3)

library(help = "Sleuth3")

data("case0101")
head(case0101)

Score Treatment
1 5.0 Extrinsic
2 5.4 Extrinsic
3 6.1 Extrinsic
4 10.9 Extrinsic
5 11.8 Extrinsic
6 12.0 Extrinsic 21

Graphical Summaries

We will be using the qplot() function from the ggplot2 R package
for plotting in this course. If you do not have ggplot2 installed on
your computer already, you can do so now with the following code:

install.packages("ggplot2")

You should only need to install ggplot2 on your local computer once.

After installing ggplot2, you can load it in R using the library()
function. You’ll need to reload ggplot2 every time you start up R.

library(ggplot2)

22

Scatterplot

• A scatterplot has an explanatory variable on the x -axis and a
response variable on the y -axis.

• We think an explanatory variable either explains or causes the
response variable. This is either because of scientific
knowledge, because the explanatory variable occurred before
the response, or we are investigating the effect of the
explanatory on the response.

• Each point represents one observational unit

23

Example Scatterplot

qplot(x = bloodalc$BAC,
y = bloodalc$Weight,
geom = "point")

50

70

90

110

0.00 0.05 0.10

bloodalc$BAC

bl
oo

da
lc

$W
ei

gh
t

24

Change the point character

qplot(x = bloodalc$BAC,
y = bloodalc$Weight,
geom = "point",
shape = I(2))

50

70

90

110

0.00 0.05 0.10

bloodalc$BAC

bl
oo

da
lc

$W
ei

gh
t

25

Add labels

qplot(x = bloodalc$BAC, y = bloodalc$Weight,
geom = "point",
xlab = "Blood Alcohol Content", ylab = "Weight",
main = "BAC vs Weight")

50

70

90

110

0.00 0.05 0.10

Blood Alcohol Content

W
ei

gh
t

BAC vs Weight

26

The I() Functions i

The I() function used within qplot() tells qplot() to force all
points to be the same character. If you don’t use I(), qplot() is
expecting another variable the same length as x and y that will
determine what each character will be.

qplot(x = bloodalc$BAC,
y = bloodalc$Weight,
shape = bloodalc$Gender,
geom = "point",
xlab = "Blood Alcohol Content",
ylab = "Weight",
main = "BAC vs Weight")

27

The I() Functions ii

50

70

90

110

0.00 0.05 0.10

Blood Alcohol Content

W
ei

gh
t bloodalc$Gender

female

male

BAC vs Weight

28

Colors i

qplot(x = bloodalc$BAC,
y = bloodalc$Weight,
color = bloodalc$Gender,
geom = "point",
xlab = "Blood Alcohol Content",
ylab = "Weight",
main = "BAC vs Weight")

29

Colors ii

50

70

90

110

0.00 0.05 0.10

Blood Alcohol Content

W
ei

gh
t bloodalc$Gender

female

male

BAC vs Weight

30

Cycling

The plots created by the qplot() functions used in the script can
be found in the Plot window. Use the arrow to cycle through all
four plots we just created. Use the Export menu to save or copy the
current plot.

31

Histogram i

• The distribution of a variable tells us what values it takes and
how often it takes these values.

• Histograms plot the frequencies (counts), percents, or
proportions of equal-width classes of values. They describe the
distribution of a continuous variable. E.g.

x <- c(1, 1.2, 2, 3, 3.5, 3.9)

Bin the observations into one of three groups:

• group1 = x : x ≤ 2
• group2 = x : 2 < x ≤ 3
• group3 = x : 3 < x ≤ 4

32

Histogram ii

qplot(x,
geom = "histogram",
bins = 3,
fill = I("white"),
color = I("black"))

33

Histogram iii

0

1

2

3

1 2 3 4 5

x

34

Skew i

0

25

50

75

100

−2 0 2

rnorm(1000)

Symmetric

35

Skew ii

0

50

100

150

0 5 10 15 20

rchisq(1000, df = 3)

Skewed Right

36

Skew iii

0

50

100

150

200

−20 −15 −10 −5 0

−1 * rchisq(1000, df = 3)

Skewed Left

37

Numerical Summaries

The Mean

The mean is the average value. You sum of the values, then divide
by the number of observations. The mean of x1, x2, . . . , xn is

x̄ = 1
n

n∑
i=1

xi

In R, you use the mean() function.

mean(bloodalc$BAC)

[1] 0.04364

38

The Mean is Sensitive to outliers

mean(c(2,3,5,7))

[1] 4.25

mean(c(2,3,5,70))

[1] 20

mean(c(2,3,5,700))

[1] 177.5

mean(c(2,3,5,7000))

[1] 1752

39

The Median

The median is the “middle point”. It is defined as

• The
(

n+1
2

)
th largest observation if n is odd.

• The average of the
(n

2
)
th and

(n
2 + 1

)
th largest observations if

n is even.

Use the median() function in R.

median(bloodalc$BAC)

[1] 0.0375

40

Median “by hand” i

x <- c(1,2,8,10,18,23,36)

Sort the observations

sorted_x <- sort(x)
sorted_x

[1] 1 2 8 10 18 23 36

x is odd with length length(x) = 7, so we take the 4th
observation of sorted_x.

middle_num <- (length(x) + 1) / 2
sorted_x[middle_num]

41

Median “by hand” ii

[1] 10

Same as median(x)

median(x)

[1] 10

42

The Median is Robust to outliers

median(c(2,3,5,7))

[1] 4

median(c(2,3,5,70))

[1] 4

median(c(2,3,5,700))

[1] 4

median(c(2,3,5,7000))

[1] 4

43

When to use each measure of center

• Generally you use the mean when you have (i) symmetric data
with no and few outliers or (ii) when a “total” is important.

• You use the median with you have (i) skewed data or (ii) many
outliers or (iii) the “typical value” is important.

44

The standard deviation

• The standard deviation is, roughly, how far away the points
are on average from the mean.

• Exact definition: √√√√ 1
n − 1

n∑
i=1

(xi − x̄)2

• The variance is the square of the standard deviation.
• Generally use in same situations where mean is appropriate.

45

The standard deviation is not robust

sd(c(2,3,5,7))

[1] 2.217

sd(c(2,3,5,70))

[1] 33.36

sd(c(2,3,5,700))

[1] 348.3

sd(c(2,3,5,7000))

[1] 3498

46

The range

• The range is the largest value minus the smallest value.
• A measure of spread.
• Variables that have large ranges are more spread out.
• The range is not robust to outliers.

47

Quantiles

• The pth quantile (or pth percentile) is the value Vp such
that p percent of the sample points are at or below Vp.

• People generally return the 25th, 50th, and 75th quantiles to
give you an idea of how spread out the data are.

quantile(bloodalc$BAC, c(0.25, 0.5, 0.75))

25% 50% 75%
0.0200 0.0375 0.0650

48

Boxplot

• Plots the 0th, 25th, 50th, 75th, and 100th quantiles
• Useful for comparing continuous distributions.

49

Boxplots with qplot

• To plot one variable, just use geom = "boxplot"

qplot(y = bloodalc$BAC, geom = "boxplot")

0.00

0.05

0.10

−0.4 −0.2 0.0 0.2 0.4

bl
oo

da
lc

$B
A

C

50

Boxplots with qplot

• To plot one two variables, need an x-axis variable distinguishing
between the different variables.

qplot(x = bloodalc$Gender,
y = bloodalc$BAC, geom = "boxplot")

0.00

0.05

0.10

female male

bloodalc$Gender

bl
oo

da
lc

$B
A

C

51

Why use qplot()?

Why use qplot()? i

Most R intro classes will teach graphics with the default plot()
function. So why are we using qplot()? Reasons:

1. Unless you are doing something exotic, you can plot more with
fewer lines of code.

2. The defaults look a little better.

52

Insert Data

x <- c(1, 2, 8, 10, 18, 23, 36)
y <- 36 * x - x ^ 2

53

Using ggplot

qplot(x, y, geom = "line")

0

100

200

300

0 10 20 30

x

y

54

Using base graphics

plot(x, y, type = "l")

0 5 15 25 35

0
25

0

x

y

55

Unsorted Data

plot() does not work well with unsorted data, but qplot()
handles it automatically

x <- c(36, 18, 8, 2, 10, 23, 1)
y <- 36 * x - x ^ 2

56

Using ggplot

qplot(x, y, geom = "line")

0

100

200

300

0 10 20 30

x

y

57

Using base graphics the wrong way

plot(x, y, type = "l")

0 5 15 25 35

0
25

0

x

y

58

Using base graphics the right way i

To use plot(), you need to first sort your x values and
correspondlingly permute the matching y values.

orderx <- order(x)
orderx

[1] 7 4 3 5 2 6 1

x[orderx]

[1] 1 2 8 10 18 23 36

y[orderx]

[1] 35 68 224 260 324 299 0

59

Using base graphics the right way ii

plot(x[orderx], y[orderx], type = "l")

60

Using base graphics the right way iii

0 10 20 30

0
20

0

x[orderx]

y[
or

de
rx

]

61

Really Complicated Plot i

For even more complicated tasks, ggplot is a lot better.

Generate data
x <- rnorm(100)
y <- x + rnorm(100)

A complicated plot using qplot()
qplot(x, y, geom = "smooth", method = "lm") + geom_point()

62

Really Complicated Plot ii

−2

0

2

4

−2 0 2

x

y

63

Same type of plot with plot() i

lm_out <- lm(y ~ x)
par(mar = c(3, 3, 3, 0.5))
pred_out <- predict(lm_out, se.fit = TRUE)
upper <- pred_out$fit + 1.96 * pred_out$se.fit
lower <- pred_out$fit - 1.96 * pred_out$se.fit
orderx <- order(x)
plot(x[orderx], pred_out$fit[orderx], type = "l",

ylim = c(min(lower), max(upper)))
lines(x[orderx], upper[orderx])
lines(x[orderx], lower[orderx])
points(x[orderx], y[orderx])

64

Same type of plot with plot() ii

−2 −1 0 1 2 3

−
2

0
2

4

pr
ed

_o
ut

$f
it[

or
de

rx
]

65

	Motivation
	Basic R
	Numerical Summaries
	Why use qplot()?

