02 Randomization Distribution

David Gerard
2018-12-07

Learning Objectives

- Understand quantifying uncertainty using the randomization distribution.
- Section 1.3 in Statistical Sleuth.

Case Study 1.1.1

library (Sleuth3)
data("case0101")
head(case0101)
\#\# Score Treatment
\#\# 1 5.0 Extrinsic
\#\# 2 5.4 Extrinsic
\#\# 3 6.1 Extrinsic
\#\# 4 10.9 Extrinsic
\#\# 5 11.8 Extrinsic
\#\# 6 12.0 Extrinsic

EDA

$$
\begin{aligned}
& \text { library (ggplot2) } \\
& \text { qplot(x = Treatment, y = Score, } \\
& \quad \text { data = case0101, geom = "boxplot") }
\end{aligned}
$$

Treatment

EDA

```
ext_scores <- case0101$Score[case0101$Treatment == "Extrins
int_scores <- case0101$Score[case0101$Treatment == "Intrins
ext_mean <- mean(ext_scores)
int_mean <- mean(int_scores)
int_mean
## [1] 19.88
ext_mean
## [1] 15.74
int_mean - ext_mean
## [1] 4.144
```


Question

Is 4.144 a big difference? A small difference?
Two possibilities

1. H_{A} : There is actually a difference in creativity scores between the two groups.
2. H_{0} : There is no difference, and 4.144 happened because, by chance, the intrinsic group happened to have more creative people in it.

We can explore how likely a value of 4.144 is if there were no difference.

Hypothesize

- Let's suppose that there is no difference $\left(H_{0}\right)$ and that the people were going to get the same creativity score no matter which treatment they received.
- Would we expect the difference between groups to be exactly 0 ?

Hypothesize

- Let's suppose that there is no difference $\left(H_{0}\right)$ and that the people were going to get the same creativity score no matter which treatment they received.
- Would we expect the difference between groups to be exactly 0? (hint: NO!)
- Under H_{0}, each person has the same creativity score no matter what treatment.
- Differences in average creativity between repeated samples is just due to randomly assigning each person to each group.
- We can simulate this random mechanism.

The idea of resampling is to

- use only the observed data
- resample (sample from the sample)
- with or without replacement
- I create different realizations of possible experimental results (if the null hypothesis were actually true).

The idea of resampling is to

- use only the observed data
- resample (sample from the sample)
- with or without replacement
- I create different realizations of possible experimental results (if the null hypothesis were actually true).
- I compare many, many resampled experimental results with the observed experimental results I decide if observed result is common or rare to occur by chance.
- If observed data are rare compared to resampled results: the data may point to something interesting (an effect)
- If observed data are common within resampled results: maybe result just occurred by chance (no evidence of an effect)

Another Sample

```
new_assignment <- sample(case0101$Treatment)
new_assignment
## [1] Extrinsic Intrinsic Intrinsic Intrinsic Intrinsic
## [8] Intrinsic Intrinsic Intrinsic Intrinsic Intrinsic
## [15] Intrinsic Extrinsic Intrinsic Intrinsic Extrinsic
## [22] Extrinsic Extrinsic Intrinsic Intrinsic Extrinsic
## [29] Extrinsic Extrinsic Extrinsic Intrinsic Intrinsic
## [36] Extrinsic Extrinsic Intrinsic Intrinsic Extrinsic
## [43] Intrinsic Extrinsic Extrinsic Extrinsic Intrinsic
## Levels: Extrinsic Intrinsic
```


EDA of new sample

> qplot(new_assignment, case0101\$Score, geom = "boxplot")

Another Sample

```
new_assignment <- sample(case0101$Treatment)
new_assignment
## [1] Intrinsic Extrinsic Intrinsic Extrinsic Extrinsic
## [8] Intrinsic Intrinsic Intrinsic Extrinsic Intrinsic
## [15] Extrinsic Intrinsic Intrinsic Intrinsic Intrinsic
## [22] Extrinsic Extrinsic Extrinsic Extrinsic Intrinsic
## [29] Extrinsic Extrinsic Extrinsic Extrinsic Extrinsic
## [36] Extrinsic Intrinsic Intrinsic Intrinsic Extrinsic
## [43] Extrinsic Intrinsic Intrinsic Extrinsic Intrinsic
## Levels: Extrinsic Intrinsic
```


EDA of new sample

qplot(new_assignment, case0101\$Score, geom = "boxplot")

Many Samples i

```
set.seed(1)
itermax <- 5000
diffvec <- rep(NA, length = itermax)
for (index in seq_len(itermax)) {
    new_assignment <- sample(case0101$Treatment)
    diffvec[index] <-
        mean(case0101$Score[new_assignment == "Intrinsic"]) -
        mean(case0101$Score[new_assignment == "Extrinsic"])
}
```


Many Samples ii

Many Samples iif

Many Samples iv

Many Samples v

Many Samples vi

Many Samples vii

Many Samples viif

Many Samples ix

Many Samples x

Compare to our Observed Difference

One sided hypothesis

What proportion of random assignments have a score greater than or equal to the observed score?
mean(diffvec > int_mean - ext_mean)
\#\# [1] 0.0016

Compare to magnitude of difference

Two sided p-value

What proportion of random assignments have a score as favorable or more favorable to the alternative than our observed score?
mean(abs(diffvec) > int_mean - ext_mean)
\#\# [1] 0.0044

