03 Probability Review
 2018-12-07

Example 1

a. Toss a coin and record the result. What is the probability of a heads? Tails?
b. Roll a 6 -sided die and record the result. What is the probability of getting a 1? 2? Etc.
c. Toss two coins (or one coin twice). What is the probability of getting two heads?
d. What does it mean that there is a 10% chance of rain today?

A phenomenon is random if individual outcomes are uncertain, but there is nonetheless a regular distribution of outcomes in a large number of repetitions. The probability of any outcome of a random phenomenon can be defined as the proportion of times the outcome would occur in a very long series of repetitions.

Probability distributions or models describe random processes and consist of two parts:

1. a list of all possible outcomes (called the sample space)
2. the probability of each outcome

Example 2

Give the probability distribution for Example 1b.

Example 3

Suppose you count the number of heads after two flips of a coin. Find the probability distribution of the number of heads.

Distributions are frequently described by their histogram or density curve.

Example 4

Suppose the probability distribution (model) of $\mathrm{X}=$ the number of minutes that a randomly selected student uses his or her cell phone (for any purpose) in a given hour has a population density/histogram given in the figure below. Describe the distribution of X. (Note: X is called a random variable.)

Probability Distributions of a Population

- Distributions describe behavior: the values a random variable can take and how likely it will take on these particular values (the probability of each value).
- Probability histograms or density curves (called pdf or probability distribution function) provide graphical and mathematical descriptions of probability distributions.
- The histogram or density curve can be used to find probabilities that the random variable takes on given values.

Probability Rules - Let A be an event or a random variable

- $0<P(A)<1$
- $P\left(A^{c}\right)=1-P(A)$ where A^{c} is the complement of A.
- $P(A$ or $B)=P(A)+P(B)$ provided A and B are disjoint. Two events are disjoint if they have no outcomes in common and cannot occur at the same time.

Example 5

The event $A=$ flip exactly two heads is disjoint from the event $B=$ flip exactly two tails.

- $P(A$ and $B)=P(A) P(B)$ provided A is independent of B. Two events are independent if knowing that one event occurs does not change the probability that the other occurs.

Example 6

Let T be the event that you get tail on the first toss and H be the event that you get a head on the second toss.

Some Famous Distributions

- Normal.
- dnorm(), rnorm(), pnorm(), qnorm()
$-\mu=$ the mean. The center of the distribution.
$-\sigma^{2}=$ variance. Larger implies more spread out.

- t
-dt()$, \mathrm{rt}(), \mathrm{pt}(), \mathrm{qt}()$
$-\nu=d f=$ "Degrees of freedom". Smaller implies more spread out.
- Mean is always 0 .

- Chi-squared
- dchisq(), rchisq(), pchisq(), qchisq().
$-\nu=d f=$ degrees of freedom. Smaller implies more spread out.

- Exponential
$-\operatorname{dexp}(), \operatorname{rexp}(), \operatorname{pexp}(), q \exp ()$
$-\lambda=$ "rate parameter".
- Usually used for questions like "how long before a lightbul fails"

Exponential, $\mathrm{X} \sim \operatorname{Exp}(\mu)$

- Binomial
- dbinom(), rbinom(), pbinom(), qbinom()
- $p=$ success probability
$-n=$ size
- Suppose (i) there are n trials, (ii) Each trial results one of two possible outcomes, which we will call "success" and "failure", (iii) The probability of success is p for all trials, and (iv) all trials are independent of each other. Then the number of success is binomially distributed with size n and probability p.

- Uniform
- dunif(), runif(), punif(), qunif().
$-a=$ lower bound
$-b=$ upper bound
- "Every value has an equal probability"

- Poisson
- dpois(), rpois(), ppois(), qpois().
$-\lambda=$ rate
- Has both mean and variance equal to λ.
- Used to answer questions like "how many phone calls will we get in a fixed amount of time."

Normal Density Curves:

$N\left(\mu, \sigma^{2}\right)$

- For those who are interested, the expression for the normal density curve is:

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Different values of μ shift the curve left or right along the x-axis without changing the shape. Different values of σ stretch or squeeze the curve.

Normal density curves with different means.

Normal density curves with different standard deviations.

- 68-95-99.7 Rule:
- Approximately 68% of the observations fall within one σ of μ
- Approximately 95% of the observations fall within two σ of μ (it's really 1.96 not 2)
- Approximately 99.7% of the observations fall within three σ of μ.

- Variables which have a $N(\mu, \sigma)$ distribution are often first standardized so that they have a $N(0,1)$ distribution by subtracting the mean and dividing by the standard deviation:

$$
z=\frac{x-\mu}{\sigma}
$$

Example

Suppose the calf circumference of all adults has a normal distribution with mean 37 cm and standard deviation of 5 cm , at least approximately. We use the notation

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

to denote a normal distribution with mean μ and standard deviation σ (variance σ^{2}). Here $X=$ calf circumference is in cm , the mean is $\mu=37 \mathrm{~cm}$ and the standard deviation is $\sigma=5 \mathrm{~cm}$.
a. What is the probability that a randomly selected person has a calf circumference less than 37 cm ?
b. What proportion has calf circumference greater than 37 cm ?
c. What is the probability that a randomly selected person from the population will have a calf circumference between 27 cm and 47 cm ?
d. What is the probability that two randomly selected adults from the population will each have a calf circumference greater than 47 cm ?

Computing Probabilities in \mathbf{R}

In the R workspace for $X \sim N\left(\mu, \sigma^{2}\right)$, to find $\operatorname{Pr}(X<a)$ enter: pnorm (a, $\$ \backslash$ mu $\$, \$ \backslash$ sigma $\$$). Note that in R you must input the standard deviation not the variance.
a. $\operatorname{Pr}(\mathrm{X}<30)$
pnorm (30, 37, 5)
\#\# [1] 0.08076
b. $\operatorname{Pr}(30<\mathrm{X}<35)=\operatorname{Pr}(\mathrm{X}<35)-\mathrm{P}(\mathrm{X}<30)$
pnorm $(35,37,5)-\operatorname{pnorm}(30,37,5)$
\#\# [1] 0.2638

