Confidence Interval Interpretation

David Gerard 2018-12-07

Covering True Mean i

Covering True Mean ii

Covering True Mean iii

Covering True Mean iv

Covering True Mean v

Covering True Mean vi

Covering True Mean vii

Covering True Mean viii

Covering True Mean ix

Covering True Mean x

Covering True Mean xi

Covering True Mean xii

Covering True Mean xiii

Covering True Mean xiv

Covering True Mean xv

Covering True Mean xvi

Covering True Mean xvii

Covering True Mean xviii

Covering True Mean xix

Covering True Mean xx

Correct/Incorrect Descriptions of CI

Let I and u be the lower and upper bounds, respectively, of a 95% confidence interval.

What does "With 95% Confidence, μ is between (I, u)" mean? Which interpretations are correct/incorrect?

- 1. The probability of μ being between l and u is 95%.
- 2. Prior to sampling, the probability of μ being captured by our confidence interval is 95%.
- 3. 95% of the population's distribution is between I and u.
- 4. If we were to draw another sample, the new \bar{X} would be between I and u with 95% probability.
- 5. 95% of new \bar{X} 's would lie between I and u.
- 6. We used a procedure that captures the true μ 95% of the time in repeated samples.