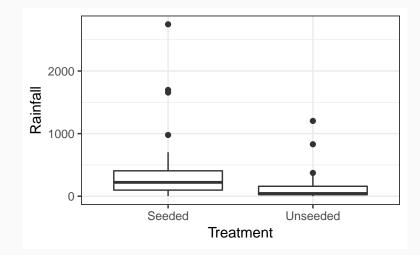
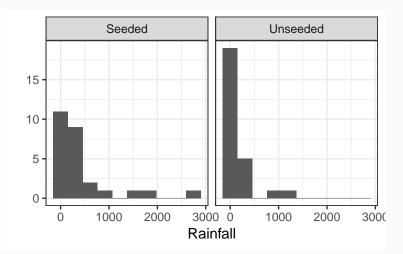
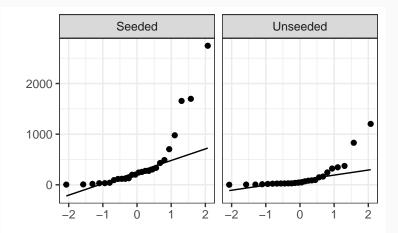
Rainfall Example


David Gerard 2018-12-07

Here, we work through the rainfall analysis

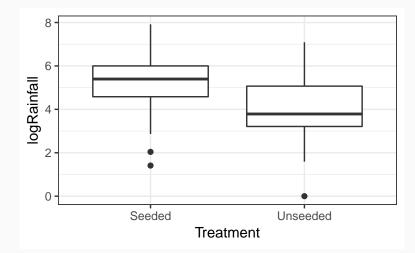
library(Sleuth3)
library(ggplot2)
data("case0301")


qplot(x = Treatment, y = Rainfall,


data = case0301, geom = "boxplot")

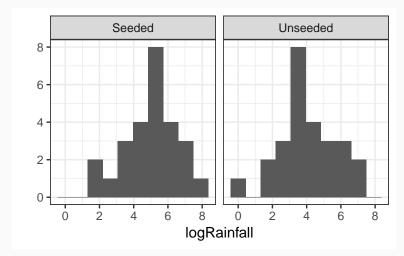
qplot(x = Rainfall, facets = . ~ Treatment,

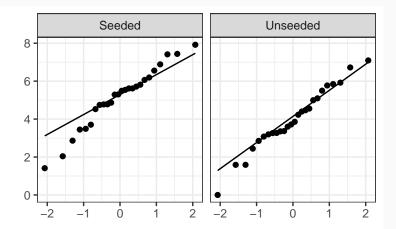
data = case0301, geom = "histogram", bins = 10)



case0301\$logRainfall <- log(case0301\$Rainfall)</pre>

Rain EDA


qplot(x = Treatment, y = logRainfall,


data = case0301, geom = "boxplot")

qplot(x = logRainfall, facets = . ~ Treatment,

data = case0301, geom = "histogram", bins = 10)

Interpretation

- Z_i = rainfall on unseeded days.
- $Y_i = \log$ rainfall on unseeded days.
- Z_i^* = rainfall on seeded days.
- $Y_i^* = \log$ rainfall on seeded days.
- $Y_i^* = Y_i + \delta$.
- $Z_i^* = e^{\delta} Z_i$.
- e^{δ} is the multiplicative effect of seeding on rainfall.
- $e^{\delta} = 2$ means rainfall is twice as large on seeded days.
- $e^{\delta} = 3$ means rainfall is three times as large on seeded days.

- $H_0: \delta = 0$
- $H_a: \delta \neq 0$

Run t-test

tout <- t.test(logRainfall ~ Treatment, data = case0301)
tout</pre>

##	
##	Welch Two Sample t-test
##	
##	data: logRainfall by Treatment
##	t = 2.5, df = 50, p-value = 0.01
##	alternative hypothesis: true difference in means is not
##	95 percent confidence interval:
##	0.2408 2.0467
##	sample estimates:
##	mean in group Seeded mean in group Unseeded
##	5.134 3.990

exp(tout\$estimate[1] - tout\$estimate[2])

mean in group Seeded
3.139

```
exp(tout$conf.int)
```

[1] 1.272 7.742
attr(,"conf.level")
[1] 0.95

- We estimate that that seeding results in a 3.1 factor increase in rainfall (*p*-value 0.01, 95% confidence interval of 1.3 to 7.7).
- Note the causal language because this is a randomized experiment. I will deduct many points if you use causal language in an observational study.