Rainfall Example

David Gerard
2018-12-07

Objectives

Here, we work through the rainfall analysis

Load in Data

library (Sleuth3)
 library (ggplot2)
 data("case0301")

Rainfall EDA

$$
\begin{aligned}
& \text { qplot }(\mathrm{x}=\text { Treatment, } \mathrm{y}=\text { Rainfall, } \\
& \text { data }=\text { case0301, geom = "boxplot") }
\end{aligned}
$$

Rainfall EDA

$$
\begin{aligned}
& \text { qplot }(x=\text { Rainfall, facets }=. \sim \text { Treatment, } \\
& \text { data }=\text { case0301, geom = "histogram", bins }=10)
\end{aligned}
$$

Rainfall EDA

$$
\begin{aligned}
& \text { qplot (sample = Rainfall, facets }=. \sim \text { Treatment, } \\
& \text { data }=\text { case0301, geom }=\text { "qq") }+ \\
& \text { geom_qq_line() }
\end{aligned}
$$

Apply Transformation

case0301\$logRainfall <- log(case0301\$Rainfall)

Rain EDA

> qplot $(\mathrm{x}=$ Treatment, $\mathrm{y}=$ logRainfall, data $=$ case0301, geom = "boxplot")

Rainfall EDA

$$
\begin{aligned}
& \text { qplot }(x=\text { logRainfall, facets }=. \sim \text { Treatment, } \\
& \text { data }=\text { case0301, geom }=\text { "histogram", bins }=10)
\end{aligned}
$$

Rainfall EDA

```
qplot(sample = logRainfall, facets = . ~ Treatment,
    data = case0301, geom = "qq") +
    geom_qq_line()
```


Interpretation

Posit a Model

- $Z_{i}=$ rainfall on unseeded days.
- $Y_{i}=\mathbf{l o g}$ rainfall on unseeded days.
- $Z_{i}^{*}=$ rainfall on seeded days.
- $Y_{i}^{*}=\log$ rainfall on seeded days.
- $Y_{i}^{*}=Y_{i}+\delta$.
- $Z_{i}^{*}=e^{\delta} Z_{i}$.
- e^{δ} is the multiplicative effect of seeding on rainfall.
- $e^{\delta}=2$ means rainfall is twice as large on seeded days.
- $e^{\delta}=3$ means rainfall is three times as large on seeded days.

Posit Hypotheses

- $H_{0}: \delta=0$
- $H_{a}: \delta \neq 0$

Run t-test

```
tout <- t.test(logRainfall ~ Treatment, data = case0301)
tout
```

\#\#
\#\# Welch Two Sample t-test
\#\#
\#\# data: logRainfall by Treatment
\#\# t $=2.5, \mathrm{df}=50, \mathrm{p}$-value $=0.01$
\#\# alternative hypothesis: true difference in means is not
\#\# 95 percent confidence interval:
\#\# 0.24082 .0467
\#\# sample estimates:
\#\# mean in group Seeded mean in group Unseeded
\#\#
5.134
3.990

Estimate and Confidence Intervals on Original Scale

$\exp ($ tout\$estimate[1] - tout\$estimate[2])
\#\# mean in group Seeded
\#\# 3.139
exp(tout\$conf.int)
\#\# [1] 1.2727 .742
\#\# attr(."conf.level")
\#\# [1] 0.95

Conclusion

- We estimate that that seeding results in a 3.1 factor increase in rainfall (p-value $0.01,95 \%$ confidence interval of 1.3 to 7.7).
- Note the causal language because this is a randomized experiment. I will deduct many points if you use causal language in an observational study.

