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Objectives

• Learn about issues when running many tests.

• Learn about solutions when running many tests.

• Implement these solutions in R.
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P-values

• Probability of seeing data as extreme or more extreme than
what we saw if H0 were true.

• Suppose we are running many tests.

• Suppose we reject when the p-value is less than 0.05.

• Then even if H0 is true in all tests, we would reject 5% of
them.
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Illustration

tvec <- rt(1000, df = 20) ## distrubiton under H0
pvalue <- 2 * pt(-abs(tvec), df = 20) ## p-values
mean(pvalue < 0.05) ## proportion of p-vals less than 0.05

## [1] 0.033
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Illustration

https://xkcd.com/882/
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Data Snooping

• Suppose you run 20 tests, get one significant result, and only
report that significant result. This is a form of data snooping.

• More generally, data snooping is where you look at the data
before choosing the hypotheses to test.

• A planned comparison is a hypothesis test chosen before
looking at the data.
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Data Snooping

• Exercise: Rank the below pairwise comparisons in decreasing
order of what you think would be the largest effect.
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Data Snooping

##
## Pairwise comparisons using t tests with pooled SD
##
## data: df_temp$y and df_temp$x
##
## 1 2 3 4
## 2 0.41 - - -
## 3 0.03 0.14 - -
## 4 0.73 0.62 0.05 -
## 5 0.31 0.84 0.19 0.49
##
## P value adjustment method: none
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Data Snooping

• Actual ordering

## Var1 Var2 pvalue
## 1 3 0.02637
## 3 4 0.05355
## 2 3 0.13589
## 3 5 0.19046
## 1 5 0.30960
## 1 2 0.40873
## 4 5 0.49431
## 2 4 0.62424
## 1 4 0.73272
## 2 5 0.84452
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Handicap Study

• How do physical handicaps affect people’s perception of
employment qualifications?

• Randomly assigned 70 undergrads to view videos of interviews
containing actors performing with different handicaps.

• Undergrads rated the qualifications of the applicant on a
10-point scale.
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EDA

library(Sleuth3)
library(ggplot2)
data("case0601")
qplot(Handicap, Score, data = case0601, geom = "boxplot")
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All Pairwise Tests

• Run all tests for H0 : µi = µj vs HA : µi 6= µj .
pairwise.t.test(x = case0601$Score,

g = case0601$Handicap,
p.adjust.method = "none")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: case0601$Score and case0601$Handicap
##
## Amputee Crutches Hearing None
## Crutches 0.018 - - -
## Hearing 0.542 0.003 - -
## None 0.448 0.103 0.173 -
## Wheelchair 0.143 0.352 0.040 0.476
##
## P value adjustment method: none
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Question

• Are those moderate p-values (0.018 and 0.04) meaningful?

• Or are they there because all hypotheses are null and these just
happened to be less than 0.05?

• Running 10 tests, so on average 0.5 should be rejected.
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Definition

• The family-wise error rate is the probability of a false
postitive (Type I error) among a family of hypothesis tests.

• I.e. the probability of making at least one Type I Error

• Recall: Type I error = rejecting H0 when it is true.
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Adjusted p-value

• Given a family of hypothesis tests, the adjusted p-value of a
test is less than α if and only if the probability of at least one
Type I error (among all tests) is at most α.

• That is, if you reject when the adjusted p-value is less than α,
then the probability (prior to sampling) of any test producing a
Type I error is less than α.
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Bonferroni Procedure

• Multiply the p-value by the number of tests.

• Works for any family of preplanned hypothesis tests.

• p-values tend to be much larger than other corrections.

16



Proof of Bonferroni Correction

• m = Total number of tests.
• m0 = Number tests where the null hypothesis is correct.
• pi = p-value for test i .
• Suppose (unknown to us) that the first m0 tests are the ones

where the null is true.

Family-wise error rate

= Pr(Type I error among the m0 tests)

= Pr(mp1 ≤ α or mp2 ≤ α or · · · or mpm0 ≤ α)

= Pr(p1 ≤ α/m or p2 ≤ α/m or · · · or pm0 ≤ α/m)

≤ Pr(p1 ≤ α/m) + Pr(p2 ≤ α/m) + · · ·+ Pr(pm0 ≤ α/m)
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Bonferroni Inequality

AB

C

Pr(A or B or C)
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Bonferroni Inequality

AB
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+ +

19



Proof of Bonferroni Correction

Family-wise error rate

= Pr(Type I error among the m0 tests)

= Pr(mp1 ≤ α or mp2 ≤ α or · · · or mpm0 ≤ α)

= Pr(p1 ≤ α/m or p2 ≤ α/m or · · · or pm0 ≤ α/m)

≤ Pr(p1 ≤ α/m) + Pr(p2 ≤ α/m) + · · ·+ Pr(pm0 ≤ α/m)

= α/m + α/m + · · ·+ α/m (m0 summations)

= m0α/m

≤ mα/m

= α
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Bonferroni Continued

pairwise.t.test(x = case0601$Score,
g = case0601$Handicap,
p.adjust.method = "bonferroni")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: case0601$Score and case0601$Handicap
##
## Amputee Crutches Hearing None
## Crutches 0.18 - - -
## Hearing 1.00 0.03 - -
## None 1.00 1.00 1.00 -
## Wheelchair 1.00 1.00 0.40 1.00
##
## P value adjustment method: bonferroni
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Holm Procedure

• Slightly better than Bonferroni, and is the default in R.

• Same conditions as Bonferroni (pre-planned tests, any type of
tests)
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Holm Continued

pairwise.t.test(x = case0601$Score,
g = case0601$Handicap,
p.adjust.method = "holm")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: case0601$Score and case0601$Handicap
##
## Amputee Crutches Hearing None
## Crutches 0.17 - - -
## Hearing 1.00 0.03 - -
## None 1.00 0.72 0.87 -
## Wheelchair 0.86 1.00 0.32 1.00
##
## P value adjustment method: holm
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Tukey-Kramer Procedure

• Use when you want all pairwise comparisons.

• Smaller p-values than Bonferroni.

• Tests need to be preplanned.

• Needs aov() object as input.
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Tukey Continued

aout <- aov(Score ~ Handicap, data = case0601)
tout <- TukeyHSD(aout)
tout

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Score ~ Handicap, data = case0601)
##
## $Handicap
## diff lwr upr p adj
## Crutches-Amputee 1.4929 -0.2389 3.2246 0.1233
## Hearing-Amputee -0.3786 -2.1103 1.3532 0.9725
## None-Amputee 0.4714 -1.2603 2.2032 0.9400
## Wheelchair-Amputee 0.9143 -0.8174 2.6460 0.5781
## Hearing-Crutches -1.8714 -3.6032 -0.1397 0.0278
## None-Crutches -1.0214 -2.7532 0.7103 0.4686
## Wheelchair-Crutches -0.5786 -2.3103 1.1532 0.8812
## None-Hearing 0.8500 -0.8817 2.5817 0.6443
## Wheelchair-Hearing 1.2929 -0.4389 3.0246 0.2348
## Wheelchair-None 0.4429 -1.2889 2.1746 0.9517
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Cool plotting

plot(tout)
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Many others

• There are many other adjustment methods.

• Each of these specialize in certain testing scenarios.

• Read the help-page of p.adjust() for more information.
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Adjusted Confidence Intervals

All Confidence Inverals for Means

estimate + multiplier * standard error
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Different Multipliers

• Original multiplier = tn−1(1− α/2)
• Bonferroni multiplier = tn−1(1− α/(2m)), where m is the

number of tests.
• Tukey has its own multiplier (get those CI’s automatically from

TukeyHSD()).
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