Multi-factorial ANOVA

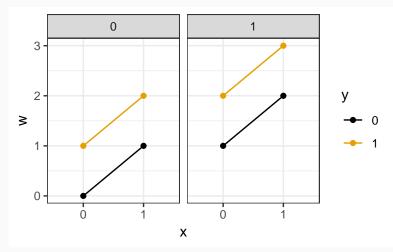
David Gerard 2018-12-07

• Brief summary of how we generalize to more than two factors.

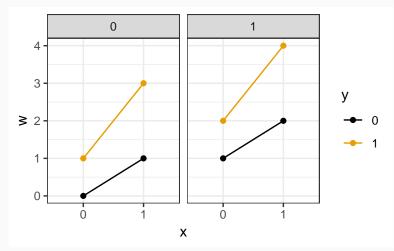
- Skill: Expert, Average
- Hand: Bad, Neutral, Good
- Limit: Fixed, None
- Cash: Final cash balance

Source: G. Meyer, M. von Meduna, T. Brosowski, T. Hayer (2012). "Is poker a Game of Skill or Chance? A Quasi-Experimental Study," Journal of Gambling Studies, Online First DOI 10.1007/s10899-012-9327-8 load("../data/poker_skill.rdata")
head(poker)

##	#	A tibb	Le: 6 2	x 4	
##		Skill	Hand	Limit	Cash
##		<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>
##	1	Expert	Bad	Fixed	4
##	2	Expert	Bad	Fixed	5.55
##	3	Expert	Bad	Fixed	9.45
##	4	Expert	Bad	Fixed	7.19
##	5	Expert	Bad	Fixed	5.71
##	6	Expert	Bad	Fixed	5.32

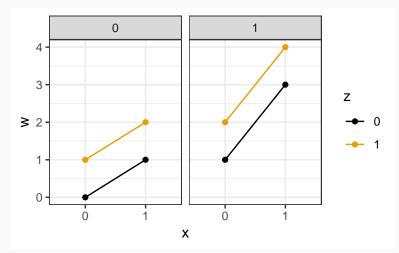

- $Y_{ijk\ell} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijk\ell}$
- μ : baseline mean.
- α_i , β_j , γ_k : main effects
- $(\alpha\beta)_{ij}, (\alpha\gamma)_{ik}, (\beta\gamma)_{jk}$: two-way interactions.
- $(\alpha\beta\gamma)_{ijk}$: three-way interaction

- One variable on x-axis
- One variable as grouping variable.
- One variable distinguish facets

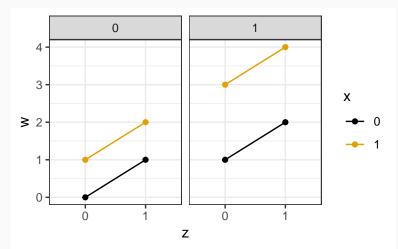

- Two-way interaction without three-way interaction: the effects change, but the interaction effect is the same between any pair of factors as the level of the third factor changes.
- Three way interaction: the interaction effect changes as we plot at different levels of the third factors.

No Interactions

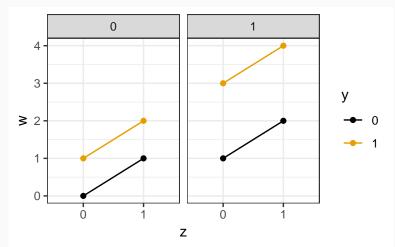
• Facets are z



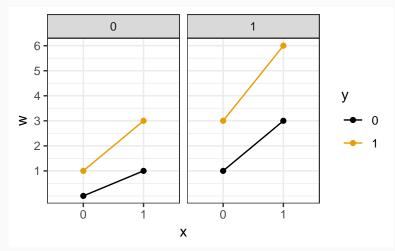
• Facets are z



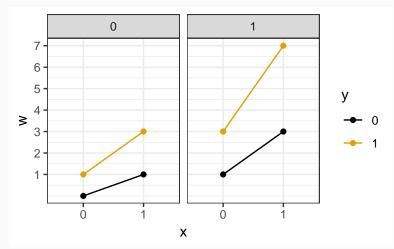
9


• Facets are y

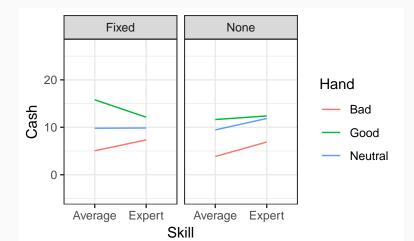
• Facets are y



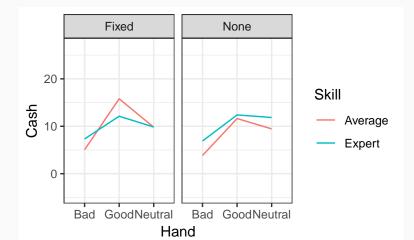
• Facets are x

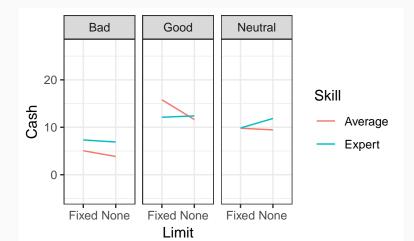

Two way interactions (between all variables), no three way

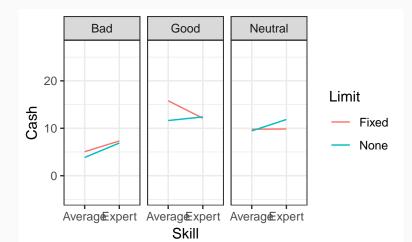
• Facets are z

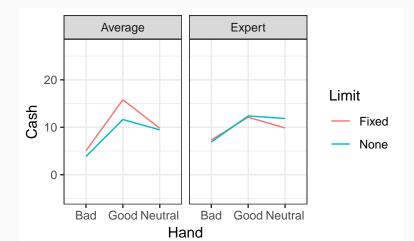


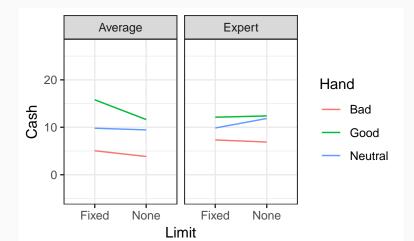
Three-way interactions


• Facets are z


```
qplot(x = Skill, y = Cash, color = Hand,
    group = Hand, facets = . ~ Limit,
    geom = "blank", data = poker) +
    stat_summary(fun.y = mean, geom = "line")
```



```
qplot(x = Hand, y = Cash, color = Skill,
    group = Skill, facets = . ~ Limit,
    geom = "blank", data = poker) +
    stat_summary(fun.y = mean, geom = "line")
```



```
qplot(x = Limit, y = Cash, color = Skill,
    group = Skill, facets = . ~ Hand,
    geom = "blank", data = poker) +
    stat_summary(fun.y = mean, geom = "line")
```

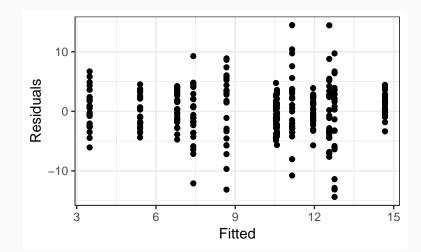


```
qplot(x = Skill, y = Cash, color = Limit,
    group = Limit, facets = . ~ Hand,
    geom = "blank", data = poker) +
    stat_summary(fun.y = mean, geom = "line")
```



```
qplot(x = Hand, y = Cash, color = Limit,
    group = Limit, facets = . ~ Skill,
    geom = "blank", data = poker) +
    stat_summary(fun.y = mean, geom = "line")
```



```
qplot(x = Limit, y = Cash, color = Hand,
    group = Hand, facets = . ~ Skill,
    geom = "blank", data = poker) +
    stat_summary(fun.y = mean, geom = "line")
```



No evidence of a three-way interaction
aout_cell <- aov(Cash ~ Skill * Hand * Limit, data = poker)
summary(aout_cell)</pre>

##		Df	Sum Sq	Mean Sq	F value	Pr(>F)
##	Skill	1	49	49	2.84	0.0931
##	Hand	2	2647	1323	76.41	<2e-16
##	Limit	1	32	32	1.83	0.1773
##	Skill:Hand	2	219	110	6.32	0.0021
##	Skill:Limit	1	119	119	6.88	0.0092
##	Hand:Limit	2	97	49	2.81	0.0619
##	Skill:Hand:Limit	2	42	21	1.22	0.2957
##	Residuals	288	4987	17		

##		Df	Sum Sq	Mean Sq	F value	Pr(>F)
##	Skill	1	49	49	2.80	0.0953
##	Hand	2	2647	1323	75.36	<2e-16
##	Limit	1	32	32	1.80	0.1802
##	Skill:Hand	2	219	110	6.24	0.0022
##	Skill:Limit	1	119	119	6.78	0.0097
##	Residuals	292	5127	18		

Residual Plots

fvec <- fitted(aout_sub)
rvec <- resid(aout_sub)
qplot(fvec, rvec, xlab = "Fitted", ylab = "Residuals")</pre>

t(t(coef(aout_sub)))

##		[,1]
##	(Intercept)	5.400
##	SkillExpert	1.404
##	HandGood	9.270
##	HandNeutral	5.180
##	LimitNone	-1.910
##	SkillExpert:HandGood	-4.124
##	SkillExpert:HandNeutral	-1.440
##	SkillExpert:LimitNone	2.520

Interpretations

Variable	Estimate
μ	5.400
α_1	0 (by definition)
α_2	1.404
β_1	0 (by definition)
β_2	5.180
β_3	9.270
γ_1	0 (by definition)
γ_2	-1.910
$(\alpha\beta)_{11}$	0 (by definition)
$(\alpha\beta)_{12}$	0 (by definition)
$(\alpha\beta)_{13}$	0 (by definition)
$(\alpha\beta)_{21}$	0 (by definition)
$(\alpha\beta)_{22}$	-1.440
$(\alpha\beta)_{23}$	-4.124
$(\alpha\gamma)_{11}$	0 (by definition)
$(\alpha\gamma)_{12}$	0 (by definition)
$(\alpha\gamma)_{21}$	0 (by definition)
$(\alpha\gamma)_{22}$	2.520

- α for skill level
- β for hand
- γ for limit
- Mean difference between experts with good hands and experts with bad hands is

$$\mu + \alpha_2 + \beta_3 + \gamma_k + (\alpha\beta)_{23} + (\alpha\gamma)_{2k}$$

- $[\mu + \alpha_2 + \beta_1 + \gamma_k + (\alpha\beta)_{21} + (\alpha\gamma)_{2k}]$
= $\mu + \alpha_2 + \beta_3 + \gamma_k + (\alpha\beta)_{23} + (\alpha\gamma)_{2k}$
- $[\mu + \alpha_2 + 0 + \gamma_k + 0 + (\alpha\gamma)_{2k}]$
= $\beta_3 + (\alpha\beta)_{23}$
= 9.270 - 4.124 = 5.146

- α for skill level
- β for hand
- γ for limit
- Mean difference between non-experts with good hands and non-experts with bad hands is

$$\mu + \alpha_1 + \beta_3 + \gamma_k + (\alpha\beta)_{13} + (\alpha\gamma)_{1k}$$
$$- [\mu + \alpha_1 + \beta_1 + \gamma_k + (\alpha\beta)_{11} + (\alpha\gamma)_{1k}]$$
$$= \beta_3$$
$$= 9.270$$

Experts benefit less from a quality hand?

- Similarly ideas for limit.
- SkillExpert:LimitNone > 0 indicates that experts benefit more from not having a limit.