Two-way ANOVA Interactions

David Gerard
2018-12-07

Objectives

- Gain intuitive understanding of Two-way ANOVA model.
- Chapter 13 in the book.

Pygmalion Effect Case Study

- Pygmalion Effect: high expectations of a supervisor translate into improved performance of subordinate.
- A company of soldiers contains three platoons each.
- Within each company, one platoon was randomly selected to be the "Pygmalion platoon."
- The platoon leader in the Pygmalion platoon was told by the army psychologist that his platoon was predicted to be superior.
- At end of basic training, all soldiers in each platoon were given a skill test.
- Data consist of average scores for each platoon.

```
library(Sleuth3)
data("case1302")
head(case1302)
```

\#\# Company Treat Score
\#\# 1 C1 Pygmalion 80.0
\#\# 2 C1 Control 63.2
\#\# 3 C1 Control 69.2
\#\# 4 C2 Pygmalion 83.9
\#\# 5 C2 Control 63.1
\#\# 6 C2 Control 81.5

When to use two-way ANOVA

1. You have a quantitative response variable.
2. You have two categorical explanatory variables.
3. It is called two-way ANOVA because each observational unit may be placed into a two-way table according to group status in both categorical variables

Company	1	2	3	4	5	6	7	8	9	10
Pyg										
Non-Pyg										

One-way ANOVA Model

- Model: $Y_{i j}=\mu_{i}+\epsilon_{i j}$
- $Y_{i j}$: Value of observational unit j of group i.
- μ_{i} : Mean value for group i.
- $\epsilon_{i j}$: Individual-specific noise for observational unit j of group i. Assumed to have mean 0 and variance σ^{2}.
- σ^{2} is assumed to be the same for all observational units of all groups

Equivalent One-way ANOVA Model

- Model: $Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}$
- μ : baseline value.
- α_{i} : Mean difference from baseline for group i.

Equivalent One-way ANOVA Model

- $\mu_{i}=\mu+\alpha_{i}$
- In R , the baseline is the mean of the first group listed when you use the levels() command.
- In SAS, it is the mean of the last group listed.
- In some other softwares, baseline is the average of the group means.
- Using this notation makes generalizing to two-way ANOVA easier.

Two-way ANOVA model: The additive model

- Model: $Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j k}$
- $Y_{i j k}$: Value of observational unit k of group i of the first categorical variable and group j of the second categorical variable.

Two-way ANOVA model: The additive model

- Model: $Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j k}$
- $Y_{i j k}$: Value of observational unit k of group i of the first categorical variable and group j of the second categorical variable.
- μ : baseline value.
- α_{i} : Additive effect of being in group i in categorical variable 1.
- β_{j} : Additive effect of being in group j in categorical variable 2.

Two-way ANOVA model: The additive model

- Model: $Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j k}$
- $Y_{i j k}$: Value of observational unit k of group i of the first categorical variable and group j of the second categorical variable.
- μ : baseline value.
- α_{i} : Additive effect of being in group i in categorical variable 1.
- β_{j} : Additive effect of being in group j in categorical variable 2.
- $\epsilon_{i j k}$: Individual-specific noise for observational unit k of group i of the first categorical variable and group j of the second categorical variable. Assumed to have mean 0 and variance σ^{2}.
- σ^{2} is assumed to be the same for all observational units of all groups

Two-way ANOVA model with interaction

- Model: $Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\epsilon_{i j k}$
- $(\alpha \beta)_{i j}$: A single number, represents the interaction effect.
- This model says that every group has it's own mean, where a group is defined by the combination of both categorical variables.

Two-way ANOVA model with interaction

- $Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\epsilon_{i j k}$
is equivalent to
- $Y_{\ell k}=\mu+\tau_{\ell k}+\epsilon_{\ell_{k}}$, where $\ell=(i, j)$.
- This is the exact same thing as the one-way ANOVA model.
- Because each group is allowed to have its own unconstrained mean. In the additive-effect model, there are constraints.
- People often call the two-way ANOVA model with interaction the cell-means model.

The Additive Model

The Additive Model

- The additive effect of treatment is the same for all companies.

group
\rightarrow Control
- Pygmalion

The Additive Model

- The additive effect of treatment is the same for all companies.

Cell Means Model

Cell Means Model

- The additive effect differs based on which company you are looking at.
- Not as interpretable if dependent on the company.

Cell Means Model

- The additive effect differs based on which company you are looking at.
- Not as interpretable if dependent on the company.

Real Data

Treat

- Control

Pygmalion

Company

Quick Interaction Plots in R

interaction.plot(x.factor = case1302\$Company,

$$
\begin{aligned}
& \text { trace.factor }=\text { case } 1302 \$ \text { Treat }, \\
& \text { response }=\text { case } 1302 \$ \text { Score }
\end{aligned}
$$

ggplot2 Interaction Plots in R

$$
\begin{aligned}
& \text { qplot }(x=\text { Company, } y=\text { Score, } \\
& \text { color }=\text { Treat, group }=\text { Treat, } \\
& \text { data }=\text { case1302, geom }=\text { "blank" })+ \\
& \text { stat_summary (fun. } y=\text { mean, geom }=\text { "line" })
\end{aligned}
$$

Treat

- Control
- Pygmalion

Company

Testing for Interactions

- Often, the first-step of a two-way ANOVA is to test for interactions.
- If we don't see strong evidence for interactions, we often proceed to assume additivity (due to its better interpretability).
- $H_{0}:(\alpha \beta)_{i j}=0$ for all i and all j.
- H_{A} : At least one $(\alpha \beta)_{i j} \neq 0$.

F-test for Interaction Effects

1. Estimate the group means under the full model (cell-means model; with interactions) and the reduced model (addititve model; without interactions).
2. Calculate residuals under both models: $R S S_{\text {full }}$ and $R S S_{\text {reduced }}$.
3. Calculate the extra sums of squares: $E S S=R S S_{\text {reduced }}-R S S_{\text {full }}$.
4. Calculate F-statistic: $\frac{E S S / d f_{\text {extra }}}{R S S_{\text {ful }} / d f_{\text {ful }}}$
5. Compare to an $F_{d f_{\text {extra }}, d f_{\text {full }}}$ distribution.

Degrees of Freedom

- Let n be the total number of observational units.
- In the full (cell-means) model, there are $I \times J$ parameters (how many groups there are, just like in one-way ANOVA).
- $d f_{\text {full }}=n-I J$
- In the reduced (additive) model, there are $I+J-1$ parameters (I - 1 effects for variable $1, J-1$ effects for variable 2 , and the baseline value).
- $d f_{\text {reduced }}=n-I-J+1$
- $d f_{\text {extra }}=I J-I-J+1$

Estimate Under Reduced

- Model: $Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j k}$
- Under balanced designs (sample size is the same for all groups), the estimates are provided below.
- $\hat{\alpha}_{i}=\bar{Y}_{i . .}-\bar{Y}_{1 .}$
- $\hat{\beta}_{j}=\bar{Y}_{\cdot j}-\bar{Y}_{\cdot 1}$.
- $\hat{\mu}=\bar{Y}_{.1}+\bar{Y}_{1 . .}-\bar{Y}_{\ldots}$
- Mean estimate in cell $(i, j)=\bar{Y}_{. j}+\bar{Y}_{i . .}-\bar{Y}_{\ldots}$
- Estimates are much more complicated in non-balanced designs.

Reduced (Additive) Model

- Mean Estimates

Reduced (Additive) Model

- Effect size estimate same for all groups

Reduced (Additive) Model

- Find the Residuals

Estimate Under Full

- Model: $Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\epsilon_{i j k}$
- Mean estimate in cell $(i, j)=\bar{Y}_{i j}$.

Full (Cell-means) Model

- Mean Estimates

Full (Cell-means) Model

- Effect size estimate different for all groups

Full (Cell-means) Model

- Find the Residuals

Treat

\rightarrow Control
\rightarrow - Pygmalion

Sum of Squared Residuals

- $R S S_{\text {full }}=467.04$
- $d f_{f u l l}=n-I J=29-10 \times 2=9$

Sum of Squared Residuals

- $R S S_{\text {full }}=467.04$
- $d f_{f u l l}=n-I J=29-10 \times 2=9$
- $R_{S S}$ reduced $=778.5039$
- $d f_{\text {reduced }}=n-I-J+1=29-10-2+1=18$

Sum of Squared Residuals

- $R S S_{\text {full }}=467.04$
- $d f_{f u l l}=n-I J=29-10 \times 2=9$
- RSS $_{\text {reduced }}=778.5039$
- $d f_{\text {reduced }}=n-I-J+1=29-10-2+1=18$
- $E S S=R S S_{\text {reduced }}-R S S_{\text {full }}=311.4639$
- $d f_{\text {extra }}=d f_{\text {reduced }}-d f_{\text {full }}=9$

Sum of Squared Residuals

- $R S S_{\text {full }}=467.04$
- $d f_{f u l l}=n-I J=29-10 \times 2=9$
- $R_{S S}$ reduced $=778.5039$
- $d f_{\text {reduced }}=n-I-J+1=29-10-2+1=18$
- $E S S=R S S_{\text {reduced }}-R S S_{\text {full }}=311.4639$
- $d f_{\text {extra }}=d f_{\text {reduced }}-d f_{\text {full }}=9$
- F-statistic $=\frac{E S S / d f_{\text {extra }}}{R S S_{\text {full }} / d f_{\text {full }}}=0.6669$.

Compare 0.6669 to a $F_{9,9}$ Distribution

Compare 0.6669 to a $F_{9,9}$ Distribution

pf(0.667, df1 = 9, df2 = 9, lower.tail = FALSE)
\#\# [1] 0.722

- There is no evidence that the there is an interaction between Company and Treatment.

```
aout_int <- aov(Score ~ Company * Treat, data = case1302)
anova(aout_int)
## Analysis of Variance Table
##
## Response: Score
##
## Company
9
75 1.44 0.299
## Treat 1
## Company:Treat
9
311
35
    0.67 0.722
## Residuals 9 467 52
```


What those numbers mean

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
Company	blah	blah	blah	blah	blah
Treat	blah	blah	blah	blah	blah
Company:Treat	$d f_{\text {extra }}$	$E S S$	$E S S / d f_{\text {extra }}$	F-stat	p-value
Residuals	$d f_{\text {full }}$	$R S S_{\text {full }}$	$R S S_{\text {full }} / d f_{\text {full }}$		

R syntax

- *: include this interaction and all smaller-order terms
- :: include this interaction
- +: add another term
- -: remove a term
E.g.
- Company + Treat fits $\mu+\alpha_{i}+\beta_{j}$
- Company * Treat fits $\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}$
- Company * Treat - Company:Treat fits $\mu+\alpha_{i}+\beta_{j}$

A Closer Look at Additivity

Additive With Three Categories

- More than two categories in each variable.

group
\rightarrow AnotherGroup
\rightarrow Control
\rightarrow Pygmalion

Additive With Three Categories

- The additive effect of treatment is the same for all companies.

Additive With Three Categories

- The additive effect of treatment is the same for all companies.

NON-Additive With Three Categories

- More than two categories in each variable.

group
\rightarrow AnotherGroup
\rightarrow Control
\rightarrow Pygmalion

NON-Additivity

- Same direction of an effect, but non-additive

group
\rightarrow Control
\rightarrow Pygmalion

What to do when there are significant interactions?

- The best course of action is to show an interaction plot (like the one above).

```
qplot(Company, Score, group = Treat,
    color = Treat, geom = "blank",
    data = case1302) +
```

stat_summary(fun.y = mean, geom = "line")

Treat

- Control
- Pygmalion

