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= Gain intuitive understanding of Two-way ANOVA model.
= Chapter 13 in the book.



Pygmalion Effect Case Study

= Pygmalion Effect: high expectations of a supervisor translate
into improved performance of subordinate.

= A company of soldiers contains three platoons each.

= Within each company, one platoon was randomly selected to
be the “Pygmalion platoon.”

= The platoon leader in the Pygmalion platoon was told by the
army psychologist that his platoon was predicted to be superior.

= At end of basic training, all soldiers in each platoon were given
a skill test.

= Data consist of average scores for each platoon.



library(Sleuth3)
data("casel1302")
head(case1302)

##  Company Treat Score
## 1 C1 Pygmalion 80.0
## 2 C1 Control 63.2
## 3 C1 Control 69.2
## 4 C2 Pygmalion 83.9
## 5 C2 Control 63.1
## 6 C2 Control 81.5



When to use two-way ANOVA

1. You have a quantitative response variable.
2. You have two categorical explanatory variables.

3. It is called two-way ANOVA because each observational unit

may be placed into a two-way table according to group status
in both categorical variables
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One-way ANOVA Model

= Model: Yj; = i +¢j;
= Yji: Value of observational unit j of group i.
= ;i Mean value for group i.

= ¢;;: Individual-specific noise for observational unit j of group i.

Assumed to have mean 0 and variance o2.

» o2 is assumed to be the same for all observational units of all

groups



Equivalent One-way ANOVA Model

* Model: Y = pu+ aj +¢€j
= 4 baseline value.

= «;: Mean difference from baseline for group i.



Equivalent One-way ANOVA Model

[ ] /Li:,u"i'af

= In R, the baseline is the mean of the first group listed when you

use the levels() command.
= In SAS, it is the mean of the last group listed.

= In some other softwares, baseline is the average of the group

means.

= Using this notation makes generalizing to two-way ANOVA

easier.



Two-way ANOVA model: The additive model

» Model: Y = p+ o + B + €jj
» Yji: Value of observational unit k of group i of the first
categorical variable and group j of the second categorical

variable.



Two-way ANOVA model: The additive model

= Model: Y = pu+ aj+ B; + €jji

» Yji: Value of observational unit k of group i of the first
categorical variable and group j of the second categorical
variable.

= 4 baseline value.

= «;: Additive effect of being in group i in categorical variable 1.

= 3 Additive effect of being in group j in categorical variable 2.



Two-way ANOVA model: The additive model

= Model: Y = pu+ aj+ B; + €jji

» Yji: Value of observational unit k of group i of the first
categorical variable and group j of the second categorical
variable.

= 4 baseline value.

= «;: Additive effect of being in group i in categorical variable 1.

= 3 Additive effect of being in group j in categorical variable 2.

* ¢jjk: Individual-specific noise for observational unit k of group i
of the first categorical variable and group j of the second

categorical variable. Assumed to have mean 0 and variance o?.

» o2 is assumed to be the same for all observational units of all

groups



Two-way ANOVA model with interaction

» Model: Y = p+ aj + 5j + (Oéﬂ)l'j + €jjk
= (af)j: A single number, represents the interaction effect.

= This model says that every group has it's own mean, where a
group is defined by the combination of both categorical

variables.
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Two-way ANOVA model with interaction

» Yik = p+ai+ 8+ (aB)j + €k

is equivalent to

» Yok = p+ 7ok + €g,, Where £ = (i, ).

= This is the exact same thing as the one-way ANOVA model.

= Because each group is allowed to have its own unconstrained
mean. In the additive-effect model, there are constraints.

= People often call the two-way ANOVA model with interaction

the cell-means model.
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The Additive Model
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The Additive Model

= The additive effect of treatment is the same for all companies.
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The Additive Model

= The additive effect of treatment is the same for all companies.
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Cell Means Model

85
80

o

5 group

@ 77 ,

c / 4 —e— Control

g 70 - Pygmalion
65

company

5



Cell Means Model

= The additive effect differs based on which company you are
looking at.
= Not as interpretable if dependent on the company.
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Cell Means Model

= The additive effect differs based on which company you are
looking at.
= Not as interpretable if dependent on the company.
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Score
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Quick Interaction Plots in R

interaction.plot(x.factor = casel302$Company,
trace.factor = casel302$Treat,

response = casel302$Score)
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ggplot2 Interaction Plots in R

gplot(x = Company, y = Score,
color = Treat, group = Treat,
data = casel302, geom = "blank") +

stat_summary(fun.y = mean, geom = "line")
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Testing for Interactions

= Often, the first-step of a two-way ANOVA is to test for
interactions.

= |f we don’t see strong evidence for interactions, we often
proceed to assume additivity (due to its better interpretability).

= Ho: (aB); =0 forall jand all j.
= Hp : At least one (af3); # 0.
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F-test for Interaction Effects

1. Estimate the group means under the full model (cell-means
model; with interactions) and the reduced model (addititve
model; without interactions).

2. Calculate residuals under both models: RSS5g,; and RSS,educed-

3. Calculate the extra sums of squares:
ESS = RSSreduced — RSStuin-

s y: . ESS/dfextra
4. Calculate F-statistic: RSSun Tt

5. Compare to an Fyr, .. 4f,, distribution.
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Degrees of Freedom

= Let n be the total number of observational units.

= In the full (cell-means) model, there are | x J parameters (how
many groups there are, just like in one-way ANOVA).

u dffu// =n—1J

= In the reduced (additive) model, there are | + J — 1 parameters
(I — 1 effects for variable 1, J — 1 effects for variable 2, and the
baseline value).

) dﬂeduced:n_l_J—’_l
s dfeira=1J—1—J+1
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Estimate Under Reduced

» Model: Y = p+ o + B + €jj

= Under balanced designs (sample size is the same for all
groups), the estimates are provided below.

= &=V - V.

D=V, - Va

A=Vt V-V

= Mean estimate in cell (i,j) = Y. + Yi. — Y..

= Estimates are much more complicated in non-balanced designs.
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Reduced (Additive) Model

= Mean Estimates
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Reduced (Additive) Model

= Effect size estimate same for all groups
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Reduced (Additive) Model

= Find the Residuals
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Estimate Under Full

= Model: Yjx = pu+ o+ B; + (aB)ij + €ijk

= Mean estimate in cell (i,j) = Yj.
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Full (Cell-means) Model

= Mean Estimates
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Full (Cell-means) Model

= Effect size estimate different for all groups
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Full (Cell-means) Model

= Find the Residuals
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Sum of Squared Residuals

» RSSqy = 467.04

s dfyy=n—1J=29-10x2=9
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Sum of Squared Residuals

RSSqy = 467.04

s dfgyy=n—1J=29-10x2=9
= RSS,cduced = 778.5039
s dfredyced = N—1—J+1=29-10-2+1=18
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Sum of Squared Residuals

s RSSq = 467.04

s dfyy=n—1J=20-10x2=9

= RSS educed = 778.5039

s dfreduced =N—1—J+1=29-10-2+4+1=18
» ESS = RSS,cduced — RSSs = 311.4639

* dfextra = dfreduced — dffun = 9
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Sum of Squared Residuals

s RSSq = 467.04

s dfyy=n—1J=20-10x2=9

= RSS educed = 778.5039

s dfreduced =N—1—J+1=29-10-2+4+1=18
» ESS = RSS,cduced — RSSs = 311.4639

* dfextra = dfreduced — dffun = 9

. . _ ESS/dfextra J—
= F-statistic = m = 0.66609.

32



Compare 0.6669 to a Fy4 Distribution
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Compare 0.6669 to a Fy4 Distribution

pf(0.667, dfl1 = 9, df2 = 9, lower.tail = FALSE)

## [1] 0.722

= There is no evidence that the there is an interaction between

Company and Treatment.
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aout_int <- aov(Score ~ Company * Treat, data = casel302)

anova(aout_int)

## Analysis of Variance Table

##

## Response: Score

##t Df Sum Sq Mean Sq F value Pr(>F)
## Company 9 671 75 1.44 0.299
## Treat 1 339 339 6.53 0.031
## Company:Treat 9 311 35 0.67 0.722

## Residuals 9 467 52
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What those numbers mean

Company
Treat
Company:Treat
Residuals

Df
blah
blah
dfextra
dffun

Sum Sq Mean Sq F value
blah blah blah
blah blah blah
ESS B55) ll F-stat
RSSquy RSSgu/dffun

Pr(>F)
blah
blah

p-value
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= x: include this interaction and all smaller-order terms
= :: include this interaction

= +: add another term

= —: remove a term

» Company + Treat fits u + o + ;
» Company * Treat fits u + «a; + §; + (af3);
» Company * Treat - Company:Treat fits u + o; + 3;
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A Closer Look at Additivity




Additive With Three Categories

= More than two categories in each variable.
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Additive With Three Categories

= The additive effect of treatment is the same for all companies.

mean score
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Additive With Three Categories

= The additive effect of treatment is the same for all companies.

mean score
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NON-Additive With Three Categories

= More than two categories in each variable.
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NON-Additivity

= Same direction of an effect, but non-additive
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What to do when there are significant interactions?

= The best course of action is to show an interaction plot (like
the one above).

gplot (Company, Score, group = Treat,

color = Treat, geom = "blank",
data = casel302) +
stat_summary(fun.y = mean, geom = "line")
90 A
- Treat
o 80
(/8) Control
701 — Pygmalion
60 -
C1C10C2 C3 C4 C5 C6 C7 C8 C9 43



	A Closer Look at Additivity

