Two-way ANOVA Interactions

David Gerard 2018-12-07

- Gain intuitive understanding of Two-way ANOVA model.
- Chapter 13 in the book.

Pygmalion Effect Case Study

- Pygmalion Effect: high expectations of a supervisor translate into improved performance of subordinate.
- A company of soldiers contains three platoons each.
- Within each company, one platoon was randomly selected to be the "Pygmalion platoon."
- The platoon leader in the Pygmalion platoon was told by the army psychologist that his platoon was predicted to be superior.
- At end of basic training, all soldiers in each platoon were given a skill test.
- Data consist of average scores for each platoon.

library(Sleuth3)
data("case1302")
head(case1302)

##		Company	Treat	Score
##	1	C1	Pygmalion	80.0
##	2	C1	Control	63.2
##	3	C1	Control	69.2
##	4	C2	Pygmalion	83.9
##	5	C2	Control	63.1
##	6	C2	Control	81.5

- 1. You have a quantitative response variable.
- 2. You have two categorical explanatory variables.
- It is called *two-way* ANOVA because each observational unit may be placed into a two-way table according to group status in both categorical variables

Company	1	2	3	4	5	6	7	8	9	10
Pyg										
Non-Pyg										

One-way ANOVA Model

- Model: $Y_{ij} = \mu_i + \epsilon_{ij}$
- Y_{ij}: Value of observational unit *j* of group *i*.
- μ_i : Mean value for group *i*.
- *ϵ_{ij}*: Individual-specific noise for observational unit *j* of group *i*.
 Assumed to have mean 0 and variance σ².
- σ^2 is assumed to be the same for all observational units of all groups

- Model: $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$
- μ: baseline value.
- α_i : Mean difference from baseline for group *i*.

- $\mu_i = \mu + \alpha_i$
- In R, the baseline is the mean of the first group listed when you use the levels() command.
- In SAS, it is the mean of the last group listed.
- In some other softwares, baseline is the average of the group means.
- Using this notation makes generalizing to two-way ANOVA easier.

Two-way ANOVA model: The additive model

- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$
- Y_{ijk}: Value of observational unit k of group i of the first categorical variable and group j of the second categorical variable.

Two-way ANOVA model: The additive model

- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$
- Y_{ijk}: Value of observational unit k of group i of the first categorical variable and group j of the second categorical variable.
- µ: baseline value.
- *α_i*: Additive effect of being in group *i* in categorical variable 1.
- β_j : Additive effect of being in group *j* in categorical variable 2.

Two-way ANOVA model: The additive model

- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$
- Y_{ijk}: Value of observational unit k of group i of the first categorical variable and group j of the second categorical variable.
- µ: baseline value.
- *α_i*: Additive effect of being in group *i* in categorical variable 1.
- β_j : Additive effect of being in group *j* in categorical variable 2.
- *ϵ_{ijk}*: Individual-specific noise for observational unit *k* of group *i* of the first categorical variable and group *j* of the second
 categorical variable. Assumed to have mean 0 and variance σ².
- σ^2 is assumed to be the same for all observational units of all groups

Two-way ANOVA model with interaction

- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$
- $(\alpha\beta)_{ij}$: A single number, represents the *interaction* effect.
- This model says that every group has it's own mean, where a group is defined by the combination of both categorical variables.

•
$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

is equivalent to

- $Y_{\ell k} = \mu + \tau_{\ell k} + \epsilon_{\ell_k}$, where $\ell = (i, j)$.
- This is the exact same thing as the one-way ANOVA model.
- Because each group is allowed to have its own unconstrained mean. In the additive-effect model, there are constraints.
- People often call the two-way ANOVA model with interaction the cell-means model.

The Additive Model

The Additive Model

• The additive effect of treatment is the same for all companies.

The Additive Model

• The additive effect of treatment is the same for all companies.

Cell Means Model

Cell Means Model

- The additive effect differs based on which company you are looking at.
- Not as interpretable if dependent on the company.

Cell Means Model

- The additive effect differs based on which company you are looking at.
- Not as interpretable if dependent on the company.

Real Data

Quick Interaction Plots in R

ggplot2 Interaction Plots in R

- Often, the first-step of a two-way ANOVA is to test for interactions.
- If we don't see strong evidence for interactions, we often proceed to assume additivity (due to its better interpretability).

•
$$H_0: (\alpha\beta)_{ij} = 0$$
 for all *i* and all *j*.

• H_A : At least one $(\alpha\beta)_{ij} \neq 0$.

- Estimate the group means under the full model (cell-means model; with interactions) and the reduced model (addititve model; without interactions).
- 2. Calculate residuals under both models: RSS_{full} and RSS_{reduced}.
- 3. Calculate the extra sums of squares: $ESS = RSS_{reduced} - RSS_{full}.$
- 4. Calculate *F*-statistic: $\frac{ESS/df_{extra}}{RSS_{full}/df_{full}}$
- 5. Compare to an $F_{df_{extra}, df_{full}}$ distribution.

Degrees of Freedom

- Let *n* be the total number of observational units.
- In the full (cell-means) model, there are *I* × *J* parameters (how many groups there are, just like in one-way ANOVA).
- $df_{full} = n IJ$
- In the reduced (additive) model, there are *I* + *J* 1 parameters (*I* - 1 effects for variable 1, *J* - 1 effects for variable 2, and the baseline value).
- $df_{reduced} = n I J + 1$
- $df_{extra} = IJ I J + 1$

Estimate Under Reduced

- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$
- Under balanced designs (sample size is the same for all groups), the estimates are provided below.
- $\hat{\alpha}_i = \bar{Y}_{i..} \bar{Y}_{1..}$
- $\hat{\beta}_j = \bar{Y}_{.j.} \bar{Y}_{.1.}$
- $\hat{\mu} = \bar{Y}_{.1.} + \bar{Y}_{1..} \bar{Y}_{...}$
- Mean estimate in cell $(i,j) = \bar{Y}_{.j.} + \bar{Y}_{...} \bar{Y}_{...}$
- Estimates are much more complicated in non-balanced designs.

Reduced (Additive) Model

Reduced (Additive) Model

Effect size estimate same for all groups

Reduced (Additive) Model

- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$
- Mean estimate in cell $(i,j) = \bar{Y}_{ij}$.

Full (Cell-means) Model

Full (Cell-means) Model

• Effect size estimate *different* for all groups

Full (Cell-means) Model

Sum of Squared Residuals

- $RSS_{full} = 467.04$
- $df_{full} = n IJ = 29 10 \times 2 = 9$

Sum of Squared Residuals

- $RSS_{full} = 467.04$
- $df_{full} = n IJ = 29 10 \times 2 = 9$
- $RSS_{reduced} = 778.5039$
- $df_{reduced} = n I J + 1 = 29 10 2 + 1 = 18$

Sum of Squared Residuals

- $RSS_{full} = 467.04$
- $df_{full} = n IJ = 29 10 \times 2 = 9$
- $RSS_{reduced} = 778.5039$
- $df_{reduced} = n I J + 1 = 29 10 2 + 1 = 18$
- $ESS = RSS_{reduced} RSS_{full} = 311.4639$
- $df_{extra} = df_{reduced} df_{full} = 9$

Sum of Squared Residuals

- $RSS_{full} = 467.04$
- $df_{full} = n IJ = 29 10 \times 2 = 9$
- $RSS_{reduced} = 778.5039$
- $df_{reduced} = n I J + 1 = 29 10 2 + 1 = 18$
- $ESS = RSS_{reduced} RSS_{full} = 311.4639$
- df_{extra} = df_{reduced} df_{full} = 9

•
$$F$$
-statistic = $\frac{ESS/df_{extra}}{RSS_{full}/df_{full}} = 0.6669.$

Compare 0.6669 to a $F_{9,9}$ Distribution

pf(0.667, df1 = 9, df2 = 9, lower.tail = FALSE)

- ## [1] 0.722
 - There is no evidence that the there is an interaction between Company and Treatment.

```
aout_int <- aov(Score ~ Company * Treat, data = case1302)
anova(aout_int)</pre>
```

Analysis of Variance Table

##

Response: Score

##		Df	Sum Sq	Mean Sq	F value	Pr(>F)
##	Company	9	671	75	1.44	0.299
##	Treat	1	339	339	6.53	0.031
##	Company:Treat	9	311	35	0.67	0.722
##	Residuals	9	467	52		

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Company	blah	blah	blah	blah	blah
Treat	blah	blah	blah	blah	blah
Company:Treat	df _{extra}	ESS	ESS/df _{extra}	F-stat	<i>p</i> -value
Residuals	df _{full}	RSS_{full}	RSS_{full}/df_{full}		

- *: include this interaction and all smaller-order terms
- :: include this interaction
- +: add another term
- -: remove a term

E.g.

- Company + Treat fits $\mu + \alpha_i + \beta_j$
- Company * Treat fits $\mu + \alpha_i + \beta_j + (\alpha\beta)_{ij}$
- Company * Treat Company:Treat fits $\mu + \alpha_i + \beta_j$

A Closer Look at Additivity

Additive With Three Categories

Additive With Three Categories

• The additive effect of treatment is the same for all companies.

Additive With Three Categories

• The additive effect of treatment is the same for all companies.

NON-Additive With Three Categories

More than two categories in each variable.

NON-Additivity

• Same direction of an effect, but non-additive

What to do when there are significant interactions?

 The best course of action is to show an interaction plot (like the one above).

