Two-way ANOVA Main Effects

David Gerard 2018-12-07

- Testing for Main Effects
- Chapter 13 in the book.

Pygmalion Effect Case Study

- Pygmalion Effect: high expectations of a supervisor translate into improved performance of subordinate.
- A company of soldiers contains three platoons each.
- Within each company, one platoon was randomly selected to be the "Pygmalion platoon."
- The platoon leader in the Pygmalion platoon was told by the army psychologist that his platoon was predicted to be superior.
- At end of basic training, all soldiers in each platoon were given a skill test.
- Data consist of average scores for each platoon.

library(Sleuth3)
data("case1302")
head(case1302)

##		Company	Treat	Score
##	1	C1	Pygmalion	80.0
##	2	C1	Control	63.2
##	3	C1	Control	69.2
##	4	C2	Pygmalion	83.9
##	5	C2	Control	63.1
##	6	C2	Control	81.5

Two-way ANOVA model: The additive model

• Model:
$$Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$$

 Y_{ijk}: Value of observational unit j of group i of the first categorical variable and group j of the second categorical variable.

Two-way ANOVA model: The additive model

- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$
- Y_{ijk}: Value of observational unit j of group i of the first categorical variable and group j of the second categorical variable.
- µ: baseline value.
- α_i : Additive effect of being in group *i* in categorical variable 1.
- β_j : Additive effect of being in group *j* in categorical variable 2.

Two-way ANOVA model: The additive model

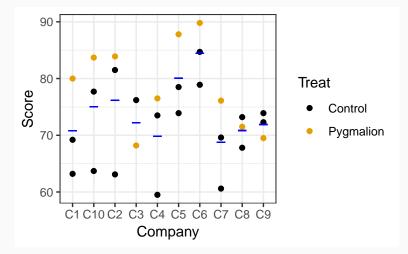
- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$
- Y_{ijk}: Value of observational unit j of group i of the first categorical variable and group j of the second categorical variable.
- μ: baseline value.
- α_i : Additive effect of being in group *i* in categorical variable 1.
- β_j : Additive effect of being in group *j* in categorical variable 2.
- *ϵ_{ijk}*: Individual-specific noise for observational unit *k* of group *i* of the first categorical variable and group *j* of the second
 categorical variable. Assumed to have mean 0 and variance σ².

 *σ*² is assumed to be the same for all observational units of all

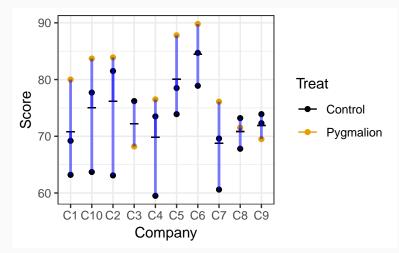
- The α_i's are called the "main effects" for company (as opposed to interaction effects).
- The β_j 's are called the "main effects" for treatment.
- We are not directly interested in the α_i's. The reasearchers just thought that there would be a lot of variability between companies and so wanted to control for this.
- We want to know if the treatment is effective.
- $H_0: \beta_i = 0$ for all *i*.
- $H_A: \beta_i \neq 0$ for some *i*.

- *J* = 2 since there are two groups (Pygmalion and Control)
- $\beta_1 = 0$ by assumption.
- β_2 is the treatment effect.
- $H_0: \beta_2 = 0$
- $H_A: \beta_2 \neq 0$

Reduced (Company Only) Model

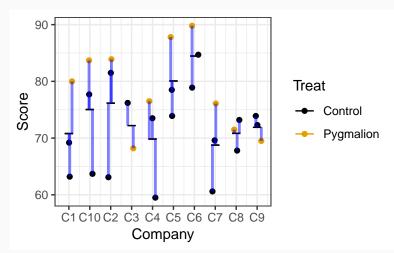


Reduced (Company Only) Model



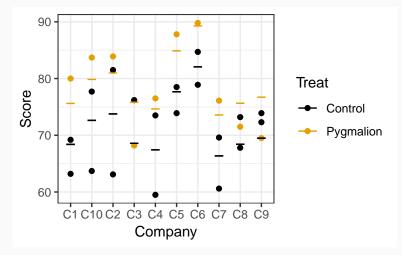
Find the Residuals

Reduced (Company Only) Model

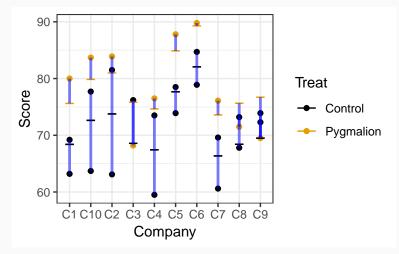


• Find the Residuals (jittered for easier viewing)

Full (Additive) Model

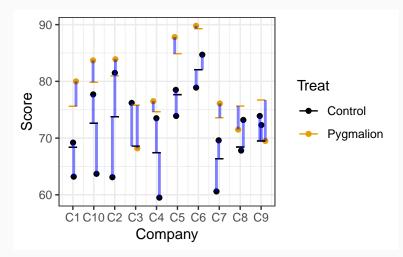


Full (Additive) Model



Full (Additive) Model

Find the Residuals (jittered for easier viewing)



- $RSS_{full} = 778.5039$
- $df_{full} = n l J + 1 = 29 10 2 + 1 = 18$

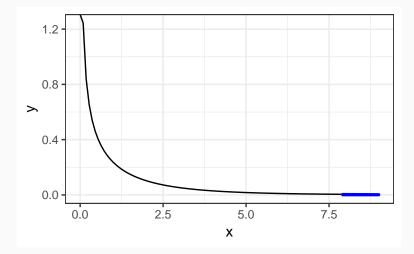
- $RSS_{full} = 778.5039$
- $df_{full} = n l J + 1 = 29 10 2 + 1 = 18$
- $RSS_{reduced} = 1117.3867$
- $df_{reduced} = n l = 29 10 = 19$

- $RSS_{full} = 778.5039$
- $df_{full} = n l J + 1 = 29 10 2 + 1 = 18$
- $RSS_{reduced} = 1117.3867$
- $df_{reduced} = n l = 29 10 = 19$
- $ESS = RSS_{reduced} RSS_{reduced} = 338.8827$
- $df_{extra} = df_{reduced} df_{full} = 1$

- $RSS_{full} = 778.5039$
- $df_{full} = n l J + 1 = 29 10 2 + 1 = 18$
- $RSS_{reduced} = 1117.3867$
- $df_{reduced} = n I = 29 10 = 19$
- $ESS = RSS_{reduced} RSS_{reduced} = 338.8827$
- $df_{extra} = df_{reduced} df_{full} = 1$

•
$$F$$
-statistic = $\frac{ESS/df_{extra}}{RSS_{full}/df_{full}} = 7.8354.$

Compare observed 7.8354 to a $F_{1,18}$ Distribution



pf(7.84, df1 = 1, df2 = 18, lower.tail = FALSE)

[1] 0.01184

Moderate evidence to suggest a treatment effect.

```
aout_add <- aov(Score ~ Company + Treat, data = case1302)
anova(aout_add)</pre>
```

```
## Analysis of Variance Table
##
## Response: Score
## Df Sum Sq Mean Sq F value Pr(>F)
## Company 9 671 75 1.72 0.156
## Treat 1 339 339 7.84 0.012
## Residuals 18 779 43
```

Get out Coefficient Estimates

t(t(coef(aout_add)))

##		[,1]
##	(Intercept)	68.39316
##	CompanyC10	4.23333
##	CompanyC2	5.36667
##	CompanyC3	0.19658
##	CompanyC4	-0.96667
##	CompanyC5	9.26667
##	CompanyC6	13.66667
##	CompanyC7	-2.03333
##	CompanyC8	0.03333
##	CompanyC9	1.10000
##	TreatPygmalion	7.22051

confint(aout_add)

##		2.5 %	97.5 %
##	(Intercept)	60.214	76.572
##	CompanyC10	-7.048	15.515
##	CompanyC2	-5.915	16.648
##	CompanyC3	-12.449	12.842
##	CompanyC4	-12.248	10.315
##	CompanyC5	-2.015	20.548
##	CompanyC6	2.385	24.948
##	CompanyC7	-13.315	9.248
##	CompanyC8	-11.248	11.315
##	CompanyC9	-10.181	12.381
##	TreatPygmalion	1.801	12.640