Simple Linear Regression

David Gerard
2018-12-07

Objectives

- Intuitively understand simple linear regression.
- Ch 7 in the book.

Case Study

- The theory of Big Bang suggests a formal relationship between the distance between any two celestial objects (Y) and the recession velocity (X) between them (how fast they are moving apart) given the (unknown) age of the universe (T):

$$
Y=T X
$$

- Distance vs velocity measurements of multiple nebulae
library(Sleuth3)
data("case0701")

Scatterplot

library (ggplot2)
qplot(Velocity, Distance, data = case0701, geom = "point")

Questions of Interest

- The formula describes a line with zero intercept. Is the intercept zero?
- What is the age of the universe (estimate T)?

Review: Lines

- Every line may be represented by a formula of the form

$$
Y=\beta_{0}+\beta_{1} X
$$

- $Y=$ response variable on y-axis
- $X=$ explanatory variable on the x-axis
- $\beta_{1}=$ slope (rise over run)
- How much larger is Y when X is increased by 1 .
- $\beta_{0}=y$-intercept (the value of the line at $X=0$)

Review Lines

A line doesn't exactly fit

A line plus noise

- The linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

A line plus noise

- The linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Y_{i} : distance from earth of nebula i

A line plus noise

- The linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Y_{i} : distance from earth of nebula i
- X_{i} : recession velocity of nebula i

A line plus noise

- The linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Y_{i} : distance from earth of nebula i
- X_{i} : recession velocity of nebula i
- β_{0} : The intercept of the mean line ("regression line")
- Mean when $X_{i}=0$

A line plus noise

- The linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Y_{i} : distance from earth of nebula i
- X_{i} : recession velocity of nebula i
- β_{0} : The intercept of the mean line ("regression line")
- Mean when $X_{i}=0$
- β_{1} : Slope of the regression line.
- Difference in mean distance between two nebula when they differ by only 1 velocity unit.

A line plus noise

- The linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Y_{i} : distance from earth of nebula i
- X_{i} : recession velocity of nebula i
- β_{0} : The intercept of the mean line ("regression line")
- Mean when $X_{i}=0$
- β_{1} : Slope of the regression line.
- Difference in mean distance between two nebula when they differ by only 1 velocity unit.
- $\beta_{0}+\beta_{1} X_{i}$: the mean distance at velocity X_{i}

A line plus noise

- The linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Y_{i} : distance from earth of nebula i
- X_{i} : recession velocity of nebula i
- β_{0} : The intercept of the mean line ("regression line")
- Mean when $X_{i}=0$
- β_{1} : Slope of the regression line.
- Difference in mean distance between two nebula when they differ by only 1 velocity unit.
- $\beta_{0}+\beta_{1} X_{i}$: the mean distance at velocity X_{i}
- ϵ_{i} : Individual noise with mean 0 and variance σ^{2}. Ideally normally distributed.

Some intuition

- The distribution of Y is conditional on the value of X.
- The distribution of Y is assumed to have the same variance, σ^{2} for all possible values of X.
- This last one is a considerable assumption.

Conditional Distributions

How do we estimate β_{0} and β_{1} ?

- β_{0} and β_{1} are parameters
- We want to estimate them from our sample

How do we estimate β_{0} and β_{1} ?

- β_{0} and β_{1} are parameters
- We want to estimate them from our sample
- Idea: Draw a line through the cloud of points and calculate the slope and intercept of that line?
- Problem: Subjective

How do we estimate β_{0} and β_{1} ?

- β_{0} and β_{1} are parameters
- We want to estimate them from our sample
- Idea: Draw a line through the cloud of points and calculate the slope and intercept of that line?
- Problem: Subjective
- Another idea: Minimize residuals (sum of squared residuals).

Ordinary Least Squares

- Residuals: $\hat{\epsilon}_{i}=Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}\right)$
- Sum of squared residuals: $\hat{\epsilon}_{1}^{2}+\hat{\epsilon}_{2}^{2}+\cdots+\hat{\epsilon}_{n}^{2}$
- Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ that have small sum of squared residuals.
- The obtained estimates, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, are called the ordinary least squares (OLS) estimates.

Bad Fit

Bad Fit

Bad Fit

Sum of Squares: 12.69

Better Fit

Better Fit

Better Fit

Sum of Squares: 4.69

Best Fit (OLS Fit)

Best Fit

Best Fit (OLS Fit)

Sum of Squares: 3.62

Closed Form Solutions

- You can use calculus to prove that the OLS fits are
- $\hat{\beta}_{1}=\frac{s_{y}}{s_{x}} \rho$
- $\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}$
where
- $s_{y}=$ sample standard deviation of the Y_{i} 's
- $s_{X}=$ sample standard deviation of the X_{i} 's
- $\rho=$ sample correlation between the X_{i} 's and Y_{i} 's.

Estimate of σ^{2}

- Once we have $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, we can estimate the variance σ^{2} using the residuals.
- $\hat{\epsilon}_{i}=Y_{i}-\left(\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)$

Estimate of σ^{2}

- Once we have $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, we can estimate the variance σ^{2} using the residuals.
- $\hat{\epsilon}_{i}=Y_{i}-\left(\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)$
- $\hat{\sigma}^{2}=\left(\hat{\epsilon}_{1}^{2}+\hat{\epsilon}_{2}^{2}+\cdots+\hat{\epsilon}_{n}^{2}\right) / \nu$
- $\hat{\sigma}^{2}=$ Sum of squared residuals divided by the degrees of freedom.

Estimate of σ^{2}

- Once we have $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, we can estimate the variance σ^{2} using the residuals.
- $\hat{\epsilon}_{i}=Y_{i}-\left(\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)$
- $\hat{\sigma}^{2}=\left(\hat{\epsilon}_{1}^{2}+\hat{\epsilon}_{2}^{2}+\cdots+\hat{\epsilon}_{n}^{2}\right) / \nu$
- $\hat{\sigma}^{2}=$ Sum of squared residuals divided by the degrees of freedom.
- $\nu=$ degrees of freedom $=n-\#$ parameters $=n-2$

$\ln R$

- Use the $\operatorname{lm}()$ function (for Linear Model)
- Always save this output.
- coef () returns the estimates of the regression "coefficients" (β_{0} and β_{1}).
lmout <- lm(Distance ~ Velocity, data = case0701) coef(lmout)

\#\# (Intercept)	Velocity	
\#\#	0.399170	0.001372

- sigma() returns the estimate of the standard deviation.
\#\# [1] 0.4056

Plot regression line

qplot(Velocity, Distance, data = case0701,

$$
\text { geom }=\text { "point") + }
$$

geom_smooth(method = "lm", se = FALSE)

Sampling Distribution

- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ both have sampling distributions.

Sampling Distribution

- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ both have sampling distributions.
- Collect a new sample where the new sample points have the same values of X_{i}.

Sampling Distribution

- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ both have sampling distributions.
- Collect a new sample where the new sample points have the same values of X_{i}.
- Recalculate the least squares estimates, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.

Sampling Distribution

- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ both have sampling distributions.
- Collect a new sample where the new sample points have the same values of X_{i}.
- Recalculate the least squares estimates, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.
- Repeat

Sampling Distribution

- Ground Truth
beta0: 0.4, beta1: 0.0014

Sampling Distribution

- Our Observed Data
beta0: 0.4, beta1: 0.0014

Sampling Distribution i

beta0: 0.47, beta1: 0.0013

Sampling Distribution ii

beta0: 0.33 , beta1: 0.0016

Sampling Distribution iif

beta0: 0.39 , beta1: 0.0017

Sampling Distribution iv

beta0: 0.29, beta1: 0.0018

Sampling Distribution v

beta0: 0.38, beta1: 0.0014

Sampling Distribution vi

beta0: 0.33, beta1: 0.0012

Sampling Distribution vii

beta0: 0.19 , beta1: 0.0018

Sampling Distribution vifi

beta0: 0.7, beta1: 8e-04

Sampling Distribution ix

beta0: 0.43, beta1: 0.0015

Sampling Distribution x

beta0: 0.28, beta1: 0.0013

Sampling Distribution of $\hat{\beta}_{1}$

Sampling Distribution of $\hat{\beta}_{0}$

Theoretical Sampling Distributions

- A variant of the central limit theorem can be used to show that for large n
- $\hat{\beta}_{1} \sim N\left(\beta_{1}, S D\left(\hat{\beta}_{1}\right)\right)$
- $S D\left(\hat{\beta}_{1}\right)=\sigma \sqrt{\frac{1}{(n-1) s_{\chi}^{2}}}$
- $\hat{\beta}_{0} \sim N\left(\beta_{0}, S D\left(\hat{\beta}_{0}\right)\right)$
- $S D\left(\hat{\beta}_{0}\right)=\sigma \sqrt{\frac{1}{n}+\frac{\bar{\chi}^{2}}{(n-1) s_{X}^{2}}}$
- The standard deviation formulas are complex (and not too important for you), but a computer can calculate them easily.

t-ratios

- So we have
- $\frac{\hat{\beta}_{1}-\beta_{1}}{S D\left(\hat{\beta}_{1}\right)} \sim N(0,1)$
- $\frac{\hat{\beta}_{0}-\beta_{0}}{S D\left(\hat{\beta}_{0}\right)} \sim N(0,1)$

t-ratios

- So we have
- $\frac{\hat{\beta}_{1}-\beta_{1}}{S D\left(\hat{\beta}_{1}\right)} \sim N(0,1)$
- $\frac{\hat{\beta}_{0}-\beta_{0}}{S D\left(\hat{\beta}_{0}\right)} \sim N(0,1)$
- $\frac{\hat{\beta}_{1}-\beta_{1}}{S E\left(\hat{\beta}_{1}\right)} \sim t_{n-2}$
- $\frac{\hat{\beta}_{0}-\beta_{0}}{S E\left(\hat{\beta}_{0}\right)} \sim t_{n-2}$

t-ratios

- So we have
- $\frac{\hat{\beta}_{1}-\beta_{1}}{S D\left(\hat{\beta}_{1}\right)} \sim N(0,1)$
- $\frac{\hat{\beta}_{0}-\beta_{0}}{S D\left(\hat{\beta}_{0}\right)} \sim N(0,1)$
- $\frac{\hat{\beta}_{1}-\beta_{1}}{S E\left(\hat{\beta}_{1}\right)} \sim t_{n-2}$
- $\frac{\hat{\beta}_{0}-\beta_{0}}{S E\left(\hat{\beta}_{0}\right)} \sim t_{n-2}$
- $\operatorname{SE}\left(\hat{\beta}_{1}\right)=\hat{\sigma} \sqrt{\frac{1}{(n-1) s_{x}^{2}}}$
- $\operatorname{SE}\left(\hat{\beta}_{0}\right)=\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\bar{\chi}^{2}}{(n-1) s_{\chi}^{2}}}$

Use t-ratios for testing hypotheses

- Under $H_{0}: \beta_{1}=0$, we have

$$
\frac{\hat{\beta}_{1}}{S E\left(\hat{\beta}_{1}\right)} \sim t_{n-2}
$$

- Compare observed t-statistic to theoretical t_{n-2} distribution and calculate p-values

Use t-ratios for confidence intervals

- The following is satisfied in 95% of repeated samples (again, where the covariate levels do not change):

$$
t_{n-2}(0.025) \leq \frac{\hat{\beta}_{1}-\beta_{1}}{\left.S E\left(\hat{\beta}_{1}\right)\right)} \leq t_{n-2}(0.975)
$$

- Solve for β_{1} to get a 95% confidence interval

$$
\hat{\beta}_{1} \pm t_{n-2}(0.975) S E\left(\hat{\beta}_{1}\right)
$$

Obtaining these in R

```
lmout <- lm(Distance ~ Velocity, data = case0701)
summary(lmout)
```

\#\#
\#\# Call:
\#\# lm(formula = Distance ~ Velocity, data = case0701)
\#\#
\#\# Residuals:

\#\#	Min	1Q	Median	3Q	Max
\#\#	-0.7672	-0.2352	-0.0108	0.2108	0.9146

\#\#
\#\# Coefficients:

\#\#	Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$			
\#\# (Intercept)	0.399170	0.118666	3.36	0.0028
\#\# Velocity	0.001372	0.000228	6.02	$4.6 \mathrm{e}-06$

\#\#
\#\# Residual standard error: 0.406 on 22 degrees of freedom
\#\# Multiple R-squared: 0.623, Adjusted R-squared: 0.605
\#\# F-statistic: 36.3 on 1 and 22 DF, p-value: $4.61 \mathrm{e}-06$

Obtaining these in R

```
confint(lmout)
## 2.5 % 97.5 %
## (Intercept) 0.1530719 0.645269
## Velocity 0.0008999 0.001845
```


Interpretation of Coefficient Estimates

Randomized Experiments

- A one unit increase in X results in a β_{1} unit increase in Y.
- E.g. Every hour after slaughter decreases the pH in the postmortem muscle of a steer carcus by 0.21 pH units ($p<0.001,95 \% \mathrm{Cl}-0.25$ to -0.16).
- The words and phrases "decreases", "increases", "results in" are causal.

Interpretation of Coefficient Estimates

Observational Study

- Populations that differ only by one unit of X tend to differ by β_{1} units Y.
- E.g. Nebulae that have a receding velocity $1 \mathrm{~km} / \mathrm{sec}$ faster tend to be 0.0014 megaparsecs further from Earth ($p<0.001$, $95 \% \mathrm{Cl}$ of 0.00090 0.0018).
- The words "differ" and "difference" are less causal.

Back to Big Bang

Case Study

- The theory of Big Bang suggests a formal relationship between the distance between any two celestial objects (Y) and the recession velocity (X) between them (how fast they are moving apart) given the (unknown) age of the universe (T):

$$
Y=T X
$$

Questions of Interest

- The formula describes a line with zero intercept. Is the intercept zero?
- What is the age of the universe (estimate T)?

Test if β_{0} is $\mathbf{0}$

```
sumout <- summary(lmout)
coef(sumout)
##
    Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.399170 0.1186662 3.364 2.803e-03
## Velocity 0.001372 0.0002278 6.024 4.608e-06
```

- We reject H_{0} and conclude that the intercept is not 0 .

Estimate Age of Universe

- If the big-bang theory were correct, $\beta_{0}=0$, so we would fit assuming $\beta_{0}=0$ to estimate β_{1} (the age of the universe) lm_noint <- lm(Distance ~ Velocity - 1, data = case0701) cbind(coef(lm_noint), confint(lm_noint))
\#\# $2.5 \% \quad 97.5 \%$
\#\# Velocity 0.0019210 .0015260 .002317
- Estimated age is 0.001921 megaparsec-second per km, with a 95% confidence interval of 0.001526 to 0.002317 megaparsec-second per km.
- Possible to convert these units to years.

