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Objectives

• Intuitively understand simple linear regression.
• Ch 7 in the book.
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Case Study

• The theory of Big Bang suggests a formal relationship between
the distance between any two celestial objects (Y ) and the
recession velocity (X ) between them (how fast they are moving
apart) given the (unknown) age of the universe (T ):

Y = TX

• Distance vs velocity measurements of multiple nebulae

library(Sleuth3)
data("case0701")
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Scatterplot

library(ggplot2)
qplot(Velocity, Distance, data = case0701, geom = "point")
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Questions of Interest

• The formula describes a line with zero intercept. Is the
intercept zero?

• What is the age of the universe (estimate T )?
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Review: Lines

• Every line may be represented by a formula of the form

Y = β0 + β1X

• Y = response variable on y -axis
• X = explanatory variable on the x -axis
• β1 = slope (rise over run)

• How much larger is Y when X is increased by 1.
• β0 = y -intercept (the value of the line at X = 0)
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Review Lines
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A line doesn’t exactly fit
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A line plus noise

• The linear regression model

Yi = β0 + β1Xi + εi

• Yi : distance from earth of nebula i
• Xi : recession velocity of nebula i
• β0: The intercept of the mean line (“regression line”)

• Mean when Xi = 0
• β1: Slope of the regression line.

• Difference in mean distance between two nebula when they
differ by only 1 velocity unit.

• β0 + β1Xi : the mean distance at velocity Xi

• εi : Individual noise with mean 0 and variance σ2. Ideally
normally distributed.
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Some intuition

• The distribution of Y is conditional on the value of X .

• The distribution of Y is assumed to have the same variance,
σ2 for all possible values of X .

• This last one is a considerable assumption.
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Conditional Distributions
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Conditional Distributions
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Conditional Distributions
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How do we estimate β0 and β1?

• β0 and β1 are parameters

• We want to estimate them from our sample

• Idea: Draw a line through the cloud of points and calculate the
slope and intercept of that line?

• Problem: Subjective

• Another idea: Minimize residuals (sum of squared residuals).
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Ordinary Least Squares

• Residuals: ε̂i = Yi − (β̂0 + β̂1Xi )

• Sum of squared residuals: ε̂21 + ε̂22 + · · · + ε̂2n

• Find β̂0 and β̂1 that have small sum of squared residuals.

• The obtained estimates, β̂0 and β̂1, are called the ordinary
least squares (OLS) estimates.
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Bad Fit
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Bad Fit
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Better Fit
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Best Fit (OLS Fit)
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Best Fit (OLS Fit)
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Closed Form Solutions

• You can use calculus to prove that the OLS fits are

• β̂1 = sy
sx
ρ

• β̂0 = Ȳ − β̂1X̄

where

• sy = sample standard deviation of the Yi ’s

• sx = sample standard deviation of the Xi ’s

• ρ = sample correlation between the Xi ’s and Yi ’s.
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Estimate of σ2

• Once we have β̂0 and β̂1, we can estimate the variance σ2

using the residuals.

• ε̂i = Yi − (β̂0 − β̂1Xi )

• σ̂2 = (ε̂21 + ε̂22 + · · · + ε̂2n)/ν

• σ̂2 = Sum of squared residuals divided by the degrees of
freedom.

• ν = degrees of freedom = n − #parameters = n − 2

25



Estimate of σ2

• Once we have β̂0 and β̂1, we can estimate the variance σ2

using the residuals.

• ε̂i = Yi − (β̂0 − β̂1Xi )

• σ̂2 = (ε̂21 + ε̂22 + · · · + ε̂2n)/ν

• σ̂2 = Sum of squared residuals divided by the degrees of
freedom.

• ν = degrees of freedom = n − #parameters = n − 2

25



Estimate of σ2

• Once we have β̂0 and β̂1, we can estimate the variance σ2

using the residuals.

• ε̂i = Yi − (β̂0 − β̂1Xi )

• σ̂2 = (ε̂21 + ε̂22 + · · · + ε̂2n)/ν

• σ̂2 = Sum of squared residuals divided by the degrees of
freedom.

• ν = degrees of freedom = n − #parameters = n − 2

25



In R

• Use the lm() function (for Linear Model)

• Always save this output.

• coef() returns the estimates of the regression “coefficients”
(β0 and β1).

lmout <- lm(Distance ~ Velocity, data = case0701)
coef(lmout)

## (Intercept) Velocity
## 0.399170 0.001372

• sigma() returns the estimate of the standard deviation.

## [1] 0.4056
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Plot regression line

qplot(Velocity, Distance, data = case0701,
geom = "point") +

geom_smooth(method = "lm", se = FALSE)
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Sampling Distribution

• β̂0 and β̂1 both have sampling distributions.

• Collect a new sample where the new sample points have
the same values of Xi .

• Recalculate the least squares estimates, β̂0 and β̂1.

• Repeat
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Sampling Distribution

• Ground Truth
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Sampling Distribution

• Our Observed Data
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Sampling Distribution i
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Sampling Distribution ii
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Sampling Distribution iii
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Sampling Distribution iv
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Sampling Distribution v
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Sampling Distribution vi
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Sampling Distribution vii
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Sampling Distribution viii
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Sampling Distribution ix
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Sampling Distribution x
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Sampling Distribution of β̂1
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Sampling Distribution of β̂0
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Theoretical Sampling Distributions

• A variant of the central limit theorem can be used to show that
for large n

• β̂1 ∼ N(β1, SD(β̂1))

• SD(β̂1) = σ
√

1
(n−1)s2

X

• β̂0 ∼ N(β0, SD(β̂0))

• SD(β̂0) = σ

√
1
n + X̄2

(n−1)s2
X

• The standard deviation formulas are complex (and not too
important for you), but a computer can calculate them easily.
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t-ratios

• So we have

• β̂1−β1
SD(β̂1) ∼ N(0, 1)

• β̂0−β0
SD(β̂0) ∼ N(0, 1)

• β̂1−β1
SE(β̂1) ∼ tn−2

• β̂0−β0
SE(β̂0) ∼ tn−2

• SE (β̂1) = σ̂
√

1
(n−1)s2

X

• SE (β̂0) = σ̂

√
1
n + X̄2

(n−1)s2
X
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Use t-ratios for testing hypotheses

• Under H0 : β1 = 0, we have

β̂1

SE (β̂1)
∼ tn−2

• Compare observed t-statistic to theoretical tn−2 distribution
and calculate p-values
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Use t-ratios for confidence intervals

• The following is satisfied in 95% of repeated samples (again,
where the covariate levels do not change):

tn−2(0.025) ≤ β̂1 − β1

SE (β̂1))
≤ tn−2(0.975)

• Solve for β1 to get a 95% confidence interval

β̂1 ± tn−2(0.975)SE (β̂1)
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Obtaining these in R

lmout <- lm(Distance ~ Velocity, data = case0701)
summary(lmout)

##
## Call:
## lm(formula = Distance ~ Velocity, data = case0701)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7672 -0.2352 -0.0108 0.2108 0.9146
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.399170 0.118666 3.36 0.0028
## Velocity 0.001372 0.000228 6.02 4.6e-06
##
## Residual standard error: 0.406 on 22 degrees of freedom
## Multiple R-squared: 0.623, Adjusted R-squared: 0.605
## F-statistic: 36.3 on 1 and 22 DF, p-value: 4.61e-06
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Obtaining these in R

confint(lmout)

## 2.5 % 97.5 %
## (Intercept) 0.1530719 0.645269
## Velocity 0.0008999 0.001845
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Interpretation of Coefficient Estimates

Randomized Experiments

• A one unit increase in X results in a β1 unit increase in Y .

• E.g. Every hour after slaughter decreases the pH in the
postmortem muscle of a steer carcus by 0.21 pH units
(p < 0.001, 95% CI -0.25 to -0.16).

• The words and phrases “decreases”, “increases”, “results in”
are causal.
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Interpretation of Coefficient Estimates

Observational Study

• Populations that differ only by one unit of X tend to differ by
β1 units Y .

• E.g. Nebulae that have a receding velocity 1 km/sec faster
tend to be 0.0014 megaparsecs further from Earth (p < 0.001,
95% CI of 0.00090 0.0018).

• The words “differ” and “difference” are less causal.
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Back to Big Bang



Case Study

• The theory of Big Bang suggests a formal relationship between
the distance between any two celestial objects (Y ) and the
recession velocity (X ) between them (how fast they are moving
apart) given the (unknown) age of the universe (T ):

Y = TX
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Questions of Interest

• The formula describes a line with zero intercept. Is the
intercept zero?

• What is the age of the universe (estimate T )?
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Test if β0 is 0

sumout <- summary(lmout)
coef(sumout)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.399170 0.1186662 3.364 2.803e-03
## Velocity 0.001372 0.0002278 6.024 4.608e-06

• We reject H0 and conclude that the intercept is not 0.
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Estimate Age of Universe

• If the big-bang theory were correct, β0 = 0, so we would fit
assuming β0 = 0 to estimate β1 (the age of the universe)

lm_noint <- lm(Distance ~ Velocity - 1, data = case0701)
cbind(coef(lm_noint), confint(lm_noint))

## 2.5 % 97.5 %
## Velocity 0.001921 0.001526 0.002317

• Estimated age is 0.001921 megaparsec-second per km, with a
95% confidence interval of 0.001526 to 0.002317
megaparsec-second per km.

• Possible to convert these units to years.
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