Simple Linear Regression

David Gerard 2018-12-07

- Intuitively understand simple linear regression.
- Ch 7 in the book.

 The theory of Big Bang suggests a formal relationship between the distance between any two celestial objects (Y) and the recession velocity (X) between them (how fast they are moving apart) given the (unknown) age of the universe (T):

$$Y = TX$$

Distance vs velocity measurements of multiple nebulae

library(Sleuth3)
data("case0701")

Scatterplot

library(ggplot2)

qplot(Velocity, Distance, data = case0701, geom = "point")

- The formula describes a line with zero intercept. Is the intercept zero?
- What is the age of the universe (estimate *T*)?

- Every line may be represented by a formula of the form

$$Y = \beta_0 + \beta_1 X$$

- Y = response variable on y-axis
- X = explanatory variable on the x-axis
- $\beta_1 = \text{slope (rise over run)}$
 - How much larger is Y when X is increased by 1.
- β₀ = y-intercept (the value of the line at X = 0)

Review Lines

A line doesn't exactly fit

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

• The linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

• Y_i: distance from earth of nebula i

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i: distance from earth of nebula i
- X_i: recession velocity of nebula i

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i: distance from earth of nebula i
- X_i: recession velocity of nebula i
- β_0 : The intercept of the mean line ("regression line")
 - Mean when $X_i = 0$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i: distance from earth of nebula i
- X_i: recession velocity of nebula i
- β_0 : The intercept of the mean line ("regression line")
 - Mean when $X_i = 0$
- β_1 : Slope of the regression line.
 - Difference in mean distance between two nebula when they differ by only 1 velocity unit.

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i: distance from earth of nebula i
- X_i: recession velocity of nebula i
- β_0 : The intercept of the mean line ("regression line")
 - Mean when $X_i = 0$
- β_1 : Slope of the regression line.
 - Difference in mean distance between two nebula when they differ by only 1 velocity unit.
- $\beta_0 + \beta_1 X_i$: the mean distance at velocity X_i

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i: distance from earth of nebula i
- X_i: recession velocity of nebula i
- β_0 : The intercept of the mean line ("regression line")
 - Mean when $X_i = 0$
- β_1 : Slope of the regression line.
 - Difference in mean distance between two nebula when they differ by only 1 velocity unit.
- $\beta_0 + \beta_1 X_i$: the mean distance at velocity X_i
- *ϵ_i*: Individual noise with mean 0 and variance σ². Ideally
 normally distributed.

- The distribution of *Y* is *conditional* on the value of *X*.
- The distribution of Y is assumed to have the same variance,
 σ² for all possible values of X.
- This last one is a considerable assumption.

- β_0 and β_1 are **parameters**
- We want to estimate them from our **sample**

- β_0 and β_1 are **parameters**
- We want to estimate them from our sample
- Idea: Draw a line through the cloud of points and calculate the slope and intercept of that line?
- Problem: Subjective

- β_0 and β_1 are **parameters**
- We want to estimate them from our sample
- Idea: Draw a line through the cloud of points and calculate the slope and intercept of that line?
- Problem: Subjective
- Another idea: Minimize residuals (sum of squared residuals).

- Residuals: $\hat{\epsilon}_i = Y_i (\hat{\beta}_0 + \hat{\beta}_1 X_i)$
- Sum of squared residuals: $\hat{\epsilon}_1^2 + \hat{\epsilon}_2^2 + \dots + \hat{\epsilon}_n^2$
- Find $\hat{\beta}_0$ and $\hat{\beta}_1$ that have small sum of squared residuals.
- The obtained estimates, β̂₀ and β̂₁, are called the ordinary least squares (OLS) estimates.

Bad Fit

Bad Fit

Better Fit

Better Fit

Closed Form Solutions

- You can use calculus to prove that the OLS fits are
- $\hat{\beta}_1 = \frac{s_y}{s_x}\rho$
- $\hat{\beta}_0 = \bar{Y} \hat{\beta}_1 \bar{X}$

where

- s_y = sample standard deviation of the Y_i 's
- s_x = sample standard deviation of the X_i 's
- ρ = sample correlation between the X_i 's and Y_i 's.

- Once we have $\hat{\beta}_0$ and $\hat{\beta}_1,$ we can estimate the variance σ^2 using the residuals.

•
$$\hat{\epsilon}_i = Y_i - (\hat{\beta}_0 - \hat{\beta}_1 X_i)$$

- Once we have $\hat{\beta}_0$ and $\hat{\beta}_1,$ we can estimate the variance σ^2 using the residuals.

•
$$\hat{\epsilon}_i = Y_i - (\hat{\beta}_0 - \hat{\beta}_1 X_i)$$

•
$$\hat{\sigma}^2 = (\hat{\epsilon}_1^2 + \hat{\epsilon}_2^2 + \dots + \hat{\epsilon}_n^2)/\nu$$

 ² = Sum of squared residuals divided by the degrees of freedom.

- Once we have $\hat{\beta}_0$ and $\hat{\beta}_1,$ we can estimate the variance σ^2 using the residuals.

•
$$\hat{\epsilon}_i = Y_i - (\hat{\beta}_0 - \hat{\beta}_1 X_i)$$

•
$$\hat{\sigma}^2 = (\hat{\epsilon}_1^2 + \hat{\epsilon}_2^2 + \dots + \hat{\epsilon}_n^2)/\nu$$

- ² = Sum of squared residuals divided by the degrees of freedom.
- $\nu = \text{degrees of freedom} = n \# \text{parameters} = n 2$

- Use the lm() function (for Linear Model)
- Always save this output.
- coef() returns the estimates of the regression "coefficients" $(\beta_0 \text{ and } \beta_1)$.

```
lmout <- lm(Distance ~ Velocity, data = case0701)
coef(lmout)</pre>
```

- ## (Intercept) Velocity
- ## 0.399170 0.001372
 - sigma() returns the estimate of the standard deviation.

```
## [1] 0.4056
```

Plot regression line

qplot(Velocity, Distance, data = case0701, geom = "point") + geom_smooth(method = "lm", se = FALSE)

• $\hat{\beta}_0$ and $\hat{\beta}_1$ both have sampling distributions.

- $\hat{\beta}_0$ and $\hat{\beta}_1$ both have sampling distributions.
- Collect a new sample where the new sample points have the same values of X_i.

- $\hat{\beta}_0$ and $\hat{\beta}_1$ both have sampling distributions.
- Collect a new sample where the new sample points have the same values of X_i.
- Recalculate the least squares estimates, $\hat{\beta}_0$ and $\hat{\beta}_1$.

- $\hat{\beta}_0$ and $\hat{\beta}_1$ both have sampling distributions.
- Collect a new sample where the new sample points have the same values of X_i.
- Recalculate the least squares estimates, $\hat{\beta}_0$ and $\hat{\beta}_1$.
- Repeat

Ground Truth

beta0: 0.4, beta1: 0.0014

Our Observed Data

beta0: 0.4, beta1: 0.0014

Sampling Distribution i

Sampling Distribution ii

Sampling Distribution iii

Sampling Distribution iv

Sampling Distribution v

Sampling Distribution vi

Sampling Distribution vii

Sampling Distribution viii

Sampling Distribution ix

39

Sampling Distribution x

Sampling Distribution of \hat{eta}_1

Sampling Distribution of \hat{eta}_0

Theoretical Sampling Distributions

- A variant of the central limit theorem can be used to show that for large *n*
- $\hat{\beta}_1 \sim N(\beta_1, SD(\hat{\beta}_1))$
- $SD(\hat{\beta}_1) = \sigma \sqrt{\frac{1}{(n-1)s_X^2}}$
- $\hat{\beta}_0 \sim N(\beta_0, SD(\hat{\beta}_0))$

•
$$SD(\hat{\beta}_0) = \sigma \sqrt{\frac{1}{n} + \frac{\bar{X}^2}{(n-1)s_X^2}}$$

 The standard deviation formulas are complex (and not too important for you), but a computer can calculate them easily.

t-ratios

- So we have
- $\begin{array}{l} \bullet \quad \frac{\hat{\beta}_1 \beta_1}{SD(\hat{\beta}_1)} \sim N(0,1) \\ \bullet \quad \frac{\hat{\beta}_0 \beta_0}{SD(\hat{\beta}_0)} \sim N(0,1) \end{array} \end{array}$

t-ratios

- So we have
- $\frac{\hat{\beta}_1-\beta_1}{SD(\hat{\beta}_1)}\sim N(0,1)$
- $rac{\hat{eta}_0-eta_0}{SD(\hat{eta}_0)}\sim N(0,1)$
- $\frac{\hat{\beta}_1 \beta_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$
- $\frac{\hat{eta}_0-eta_0}{SE(\hat{eta}_0)}\sim t_{n-2}$

t-ratios

- So we have
- $\frac{\hat{\beta}_1-\beta_1}{SD(\hat{\beta}_1)}\sim N(0,1)$
- $rac{\hat{eta}_0-eta_0}{SD(\hat{eta}_0)}\sim N(0,1)$
- $\frac{\hat{\beta}_1 \beta_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$
- $\frac{\hat{\beta}_0-\beta_0}{SE(\hat{\beta}_0)}\sim t_{n-2}$

•
$$SE(\hat{\beta}_1) = \hat{\sigma}\sqrt{\frac{1}{(n-1)s_X^2}}$$

•
$$SE(\hat{\beta}_0) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\bar{X}^2}{(n-1)s_X^2}}$$

Use *t*-ratios for testing hypotheses

• Under $H_0: \beta_1 = 0$, we have

$$rac{\hat{eta}_1}{SE(\hat{eta}_1)} \sim t_{n-2}$$

 Compare observed *t*-statistic to theoretical t_{n-2} distribution and calculate *p*-values

 The following is satisfied in 95% of repeated samples (again, where the covariate levels do not change):

$$t_{n-2}(0.025) \leq rac{\hat{eta}_1 - eta_1}{SE(\hat{eta}_1))} \leq t_{n-2}(0.975)$$

• Solve for β_1 to get a 95% confidence interval

$$\hat{\beta}_1 \pm t_{n-2}(0.975)SE(\hat{\beta}_1)$$

Obtaining these in R

lmout <- lm(Distance ~ Velocity, data = case0701)
summary(lmout)</pre>

```
##
## Call:
## lm(formula = Distance ~ Velocity, data = case0701)
##
## Residuals:
      Min 10 Median 30 Max
##
## -0.7672 -0.2352 -0.0108 0.2108 0.9146
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.399170 0.118666 3.36 0.0028
## Velocity 0.001372 0.000228 6.02 4.6e-06
##
## Residual standard error: 0.406 on 22 degrees of freedom
## Multiple R-squared: 0.623, Adjusted R-squared: 0.605
## F-statistic: 36.3 on 1 and 22 DF, p-value: 4.61e-06
```

confint(lmout)

##		2.5 %	97.5 %
##	(Intercept)	0.1530719	0.645269
##	Velocity	0.0008999	0.001845

Randomized Experiments

- A one unit increase in X results in a β_1 unit increase in Y.
- E.g. Every hour after slaughter decreases the pH in the postmortem muscle of a steer carcus by 0.21 pH units (p < 0.001, 95% CI -0.25 to -0.16).
- The words and phrases "decreases", "increases", "results in" are causal.

Observational Study

- Populations that differ only by one unit of X tend to differ by β_1 units Y.
- E.g. Nebulae that have a receding velocity 1 km/sec faster tend to be 0.0014 megaparsecs further from Earth (p < 0.001, 95% CI of 0.00090 0.0018).
- The words "differ" and "difference" are less causal.

Back to Big Bang

 The theory of Big Bang suggests a formal relationship between the distance between any two celestial objects (Y) and the recession velocity (X) between them (how fast they are moving apart) given the (unknown) age of the universe (T):

$$Y = TX$$

- The formula describes a line with zero intercept. Is the intercept zero?
- What is the age of the universe (estimate *T*)?

```
sumout <- summary(lmout)
coef(sumout)</pre>
```

##		Estimate	Std.	Error	t	value	Pr(> t)
##	(Intercept)	0.399170	0.1	186662		3.364	2.803e-03
##	Velocity	0.001372	0.0	002278		6.024	4.608e-06

• We reject H_0 and conclude that the intercept is not 0.

Estimate Age of Universe

If the big-bang theory were correct, β₀ = 0, so we would fit assuming β₀ = 0 to estimate β₁ (the age of the universe)

lm_noint <- lm(Distance ~ Velocity - 1, data = case0701)
cbind(coef(lm_noint), confint(lm_noint))</pre>

2.5 % 97.5 % ## Velocity 0.001921 0.001526 0.002317

- Estimated age is 0.001921 megaparsec-second per km, with a 95% confidence interval of 0.001526 to 0.002317 megaparsec-second per km.
- Possible to convert these units to years.