Interpreting Log Transformations

David Gerard 2018-12-07

- Interpret Log-transformations of either the explanatory of response variable.
- Ch 8 in the book.

No log on X, no log on Y

• Model: $\mu(Y|X) = \beta_0 + \beta_1 X$

- Model: $\mu(Y|X) = \beta_0 + \beta_1 X$
- So at *X* + 1 the mean is

$$\mu(Y|X+1) = \beta_0 + \beta_1(X+1)$$
$$= \beta_0 + \beta_1 X + \beta_1$$
$$= \mu(Y|X) + \beta_1$$

- Observational study interpretation: β₁ is the mean difference in the Y's when the X's are only one unit apart.
- Randomized experiment interptation: β₁ is the increase in Y when X is increased by one unit.

No log on X, log on Y

No log on X, log on Y: Interpretation

• Model: $\mu(\log(Y)|X) = \beta_0 + \beta_1 X$

No log on X, log on Y: Interpretation

- Model: $\mu(\log(Y)|X) = \beta_0 + \beta_1 X$
- If residuals are fairly symmetric, this means

 $Median(\log(Y)|X) = \beta_0 + \beta_1 X$ $\Rightarrow Median(Y|X) = \exp(\beta_0 + \beta_1 X)$ $= \exp(\beta_0) \exp(\beta_1 X)$

No log on X, log on Y: Interpretation

- Model: $\mu(\log(Y)|X) = \beta_0 + \beta_1 X$
- If residuals are fairly symmetric, this means

 $Median(\log(Y)|X) = \beta_0 + \beta_1 X$ $\Rightarrow Median(Y|X) = \exp(\beta_0 + \beta_1 X)$ $= \exp(\beta_0) \exp(\beta_1 X)$

So at X + 1 we have

 $\begin{aligned} \text{Median}(Y|X+1) &= \exp(\beta_0) \exp(\beta_1(X+1)) \\ &= \exp(\beta_0) \exp(\beta_1 X + \beta_1) \\ &= \exp(\beta_0) \exp(\beta_1 X) \exp(\beta_1) \\ &= \text{Median}(Y|X) \exp(\beta_1) \end{aligned}$

- Observational study interpretation: exp(β₁) is the ratio of medians of the Y's when they differ only by one unit of the X's.
- Randomized experiment interptation: exp(β₁) is the multiplicative change in Y when X is increased by one unit.

- Voltage and Breakdown: $\hat{\beta}_1 = -0.51$, 95% CI (-0.62, -0.39).
- "Increasing voltage of 1 kV results in a multiplicative change of exp(-0.51) = 0.6""
- "Breakdown time at 28 kV is 60% that of 27 kV"
- 95% confidence interval of the multiplicative effect is (exp(-0.62), exp(-0.39)) = (0.54, 0.68).

$$Median(Y|X + 1) - Median(Y|X)$$

$$= Median(Y|X) \exp(\beta_1) - Median(Y|X)$$

$$= (\exp(\beta_1) - 1)Median(Y|X)$$

$$= (0.6 - 1)Median(Y|X)$$

$$= -0.4Median(Y|X)$$

"Increasing kV by 1 decreases median breakdown time by 40%."

log on X, no log on Y

• Model $\mu(Y|X) = \beta_0 + \beta_1 \log(X)$

log on X, no log on Y: Interpretation

- Model $\mu(Y|X) = \beta_0 + \beta_1 \log(X)$
- Observe what happens to X when we multiply it by 2.

$$\mu(Y|2X) = \beta_0 + \beta_1 \log(2X)$$

= $\beta_0 + \beta_1 (\log(X) + \log(2))$
= $\beta_0 + \beta_1 \log(X) + \beta_1 \log(2)$
= $\mu(Y|X) + \beta_1 \log(2)$

- Observational study interpretation: β₁ log(2) is the mean difference in the Y's when the ratio of the X's is 2.
- Randomized experiment interptation: β₁ log(2) is the increase in Y when X is doubled.
- Similar interpretation for $\beta_1 \log(10)$ and a 10-fold increase in X.

- pH and time in meat after slaughter
- $Y_i = \beta_0 + \beta_1 \log(X_i)$
- $\hat{\beta}_1 = -0.726$, 95% CI (-0.805, -0.646).
- If we double the time, then the pH decreases by 0.726 log(2) = 0.503
- 95% CI: $(-0.805 \log(2), -0.646 \log(2)) = (-0.558, -0.448).$

 \log on X, \log on Y

log on X, log on Y: Interpretation

Combination of the past two interpretations

log on X, log on Y: Interpretation

- Combination of the past two interpretations
- Simplifying the model:

$$egin{aligned} \textit{Median}(Y|X) &= \exp(eta_0)\exp(eta_1\log(X)) \ &= \exp(eta_0)\exp(\log(X^{eta_1})) \ &= \exp(eta_0)X^{eta_1} \end{aligned}$$

log on X, log on Y: Interpretation

- Combination of the past two interpretations
- Simplifying the model:

$$\begin{aligned} \text{Median}(Y|X) &= \exp(\beta_0) \exp(\beta_1 \log(X)) \\ &= \exp(\beta_0) \exp(\log(X^{\beta_1})) \\ &= \exp(\beta_0) X^{\beta_1} \end{aligned}$$

• See how Median(Y|X) when you double X $Median(Y|2X) = \exp(\beta_0)(2X)^{\beta_1}$ $= \exp(\beta_0)X^{\beta_1}2^{\beta_1}$ $= Median(Y|X)2^{\beta_1}$

- Observational study interpretation: 2^{β1} is the ratio of medians of the Y's when the ratio of the X's is 2.
- Randomized experiment interptation: 2^{β1} is the multiplicative change in Y when X is doubled.
- Similar interpretation for 10^{β_1} and a 10-fold increase in X.

Other Transformations

- Might make residuals look better but don't have nice interpretations.
- If goal is
 - 1. Prediction
 - 2. Just answering **if** there is an association and you don't care what it is.

Then you can try other transformations (because interpretation does not matter).

- 1/Y tends to fix more extreme non-constant variance.
- \sqrt{Y} tends to fix less extreme non-constant variance.