Interpreting Log Transformations

David Gerard
2018-12-07

Objectives

- Interpret Log-transformations of either the explanatory of response variable.
- Ch 8 in the book.

No \log on X, no \log on Y

No \log on X, no \log on Y : Interpretation

- Model: $\mu(Y \mid X)=\beta_{0}+\beta_{1} X$

No \log on X, no \log on Y : Interpretation

- Model: $\mu(Y \mid X)=\beta_{0}+\beta_{1} X$
- So at $X+1$ the mean is

$$
\begin{aligned}
\mu(Y \mid X+1) & =\beta_{0}+\beta_{1}(X+1) \\
& =\beta_{0}+\beta_{1} X+\beta_{1} \\
& =\mu(Y \mid X)+\beta_{1}
\end{aligned}
$$

No \log on X, no \log on Y : Interpretation

- Observational study interpretation: β_{1} is the mean difference in the Y 's when the X 's are only one unit apart.
- Randomized experiment interptation: β_{1} is the increase in Y when X is increased by one unit.

No \log on X, \log on Y

No \log on X, \log on Y : Interpretation

- Model: $\mu(\log (Y) \mid X)=\beta_{0}+\beta_{1} X$

No \log on X, \log on Y : Interpretation

- Model: $\mu(\log (Y) \mid X)=\beta_{0}+\beta_{1} X$
- If residuals are fairly symmetric, this means

$$
\begin{aligned}
\operatorname{Median}(\log (Y) \mid X) & =\beta_{0}+\beta_{1} X \\
\Rightarrow \operatorname{Median}(Y \mid X) & =\exp \left(\beta_{0}+\beta_{1} X\right) \\
& =\exp \left(\beta_{0}\right) \exp \left(\beta_{1} X\right)
\end{aligned}
$$

No \log on X, \log on Y : Interpretation

- Model: $\mu(\log (Y) \mid X)=\beta_{0}+\beta_{1} X$
- If residuals are fairly symmetric, this means

$$
\begin{aligned}
& M e d i a n \\
&(\log (Y) \mid X)=\beta_{0}+\beta_{1} X \\
& \Rightarrow \operatorname{Median}(Y \mid X)=\exp \left(\beta_{0}+\beta_{1} X\right) \\
&=\exp \left(\beta_{0}\right) \exp \left(\beta_{1} X\right)
\end{aligned}
$$

- So at $X+1$ we have

$$
\begin{aligned}
\operatorname{Median}(Y \mid X+1) & =\exp \left(\beta_{0}\right) \exp \left(\beta_{1}(X+1)\right) \\
& =\exp \left(\beta_{0}\right) \exp \left(\beta_{1} X+\beta_{1}\right) \\
& =\exp \left(\beta_{0}\right) \exp \left(\beta_{1} X\right) \exp \left(\beta_{1}\right) \\
& =\operatorname{Median}(Y \mid X) \exp \left(\beta_{1}\right)
\end{aligned}
$$

No \log on X, \log on Y : Interpretation

- Observational study interpretation: $\exp \left(\beta_{1}\right)$ is the ratio of medians of the Y 's when they differ only by one unit of the X 's.
- Randomized experiment interptation: $\exp \left(\beta_{1}\right)$ is the multiplicative change in Y when X is increased by one unit.

No \log on X, \log on Y : Example

- Voltage and Breakdown: $\hat{\beta}_{1}=-0.51,95 \% \mathrm{Cl}(-0.62,-0.39)$.
- "Increasing voltage of 1 kV results in a multiplicative change of $\exp (-0.51)=0.6^{\prime \prime \prime}$
- "Breakdown time at 28 kV is 60% that of 27 kV "
- 95% confidence interval of the multiplicative effect is $(\exp (-0.62), \exp (-0.39))=(0.54,0.68)$.

No \log on X, \log on Y : Example

$$
\begin{aligned}
& \text { Median }(Y \mid X+1)-\operatorname{Median}(Y \mid X) \\
& =\operatorname{Median}(Y \mid X) \exp \left(\beta_{1}\right)-\operatorname{Median}(Y \mid X) \\
& =\left(\exp \left(\beta_{1}\right)-1\right) \operatorname{Median}(Y \mid X) \\
& =(0.6-1) \operatorname{Median}(Y \mid X) \\
& =-0.4 \text { Median }(Y \mid X)
\end{aligned}
$$

- "Increasing kV by 1 decreases median breakdown time by 40%."
\log on X, no \log on Y
- Model $\mu(Y \mid X)=\beta_{0}+\beta_{1} \log (X)$

\log on X, no \log on Y : Interpretation

- Model $\mu(Y \mid X)=\beta_{0}+\beta_{1} \log (X)$
- Observe what happens to X when we multiply it by 2 .

$$
\begin{aligned}
\mu(Y \mid 2 X) & =\beta_{0}+\beta_{1} \log (2 X) \\
& =\beta_{0}+\beta_{1}(\log (X)+\log (2)) \\
& =\beta_{0}+\beta_{1} \log (X)+\beta_{1} \log (2) \\
& =\mu(Y \mid X)+\beta_{1} \log (2)
\end{aligned}
$$

\log on X, no \log on Y : Interpretation

- Observational study interpretation: $\beta_{1} \log (2)$ is the mean difference in the Y 's when the ratio of the X 's is 2 .
- Randomized experiment interptation: $\beta_{1} \log (2)$ is the increase in Y when X is doubled.
- Similar interpretation for $\beta_{1} \log (10)$ and a 10 -fold increase in X.

\log on X, no \log on Y : Example

- pH and time in meat after slaughter
- $Y_{i}=\beta_{0}+\beta_{1} \log \left(X_{i}\right)$
- $\hat{\beta}_{1}=-0.726,95 \% \mathrm{Cl}(-0.805,-0.646)$.
- If we double the time, then the pH decreases by $0.726 \log (2)=0.503$
- 95% CI: $(-0.805 \log (2),-0.646 \log (2))=(-0.558,-0.448)$.
\log on X, \log on Y

\log on X, \log on Y : Interpretation

- Combination of the past two interpretations

\log on X, \log on Y : Interpretation

- Combination of the past two interpretations
- Simplifying the model:

$$
\begin{aligned}
\operatorname{Median}(Y \mid X) & =\exp \left(\beta_{0}\right) \exp \left(\beta_{1} \log (X)\right) \\
& =\exp \left(\beta_{0}\right) \exp \left(\log \left(X^{\beta_{1}}\right)\right) \\
& =\exp \left(\beta_{0}\right) X^{\beta_{1}}
\end{aligned}
$$

\log on X, \log on Y : Interpretation

- Combination of the past two interpretations
- Simplifying the model:

$$
\begin{aligned}
\operatorname{Median}(Y \mid X) & =\exp \left(\beta_{0}\right) \exp \left(\beta_{1} \log (X)\right) \\
& =\exp \left(\beta_{0}\right) \exp \left(\log \left(X^{\beta_{1}}\right)\right) \\
& =\exp \left(\beta_{0}\right) X^{\beta_{1}}
\end{aligned}
$$

- See how $\operatorname{Median}(Y \mid X)$ when you double X

$$
\begin{aligned}
\operatorname{Median}(Y \mid 2 X) & =\exp \left(\beta_{0}\right)(2 X)^{\beta_{1}} \\
& =\exp \left(\beta_{0}\right) X^{\beta_{1}} 2^{\beta_{1}} \\
& =\operatorname{Median}(Y \mid X) 2^{\beta_{1}}
\end{aligned}
$$

\log on X, \log on Y : Interpretation

- Observational study interpretation: $2^{\beta_{1}}$ is the ratio of medians of the Y 's when the ratio of the X 's is 2 .
- Randomized experiment interptation: $2^{\beta_{1}}$ is the multiplicative change in Y when X is doubled.
- Similar interpretation for $10^{\beta_{1}}$ and a 10 -fold increase in X.

Other Transformations

- Might make residuals look better but don't have nice interpretations.
- If goal is

1. Prediction
2. Just answering if there is an association and you don't care what it is.

Then you can try other transformations (because interpretation does not matter).

- $1 / Y$ tends to fix more extreme non-constant variance.
- \sqrt{Y} tends to fix less extreme non-constant variance.

