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Objectives

• Create new explanatory variables.

• Chapter 9.
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Adding Curvature
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Quadratic Regression is Multiple Linear Regression

• From last chapter, we said that we should fit

Yi = β0 + β1Xi + β2X 2
i + εi

• Relabel X1i = Xi

• Relabel X2i = X 2
i

• Then this is equivalent to fitting

Yi = β0 + β1X1i + β2X2i + εi
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Why is it called linear regression?

Yi = β0 + β1Xi + β2X 2
i + εi

• Multiple linear regression represents the mean of the Y ’s as a
linear combination of the β’s.

• Even though the mean is a quadratic function of the Xi ’s, it is
still a linear function of the βj ’s.
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Summary for Curvature

• To fit a polynomial, just create new variables that are powers
of existing variables, then include those in the multiple
regression model.

library(Sleuth3)
data("ex0915")
ex0915$Rainfall2 <- ex0915$Rainfall ^ 2
lmout_quad <- lm(Yield ~ Rainfall + Rainfall2, data = ex0915)
lmout_quad

##
## Call:
## lm(formula = Yield ~ Rainfall + Rainfall2, data = ex0915)
##
## Coefficients:
## (Intercept) Rainfall Rainfall2
## -5.015 6.004 -0.229 6



Summary for Curvature

##
## Call:
## lm(formula = Yield ~ Rainfall + Rainfall2, data = ex0915)
##
## Coefficients:
## (Intercept) Rainfall Rainfall2
## -5.015 6.004 -0.229

• Interpreting output:

(Intercept) Rainfall Rainfall2
β̂0 β̂1 β̂2

• Estimated Model

µ(Y |Rainfall) = −5.0 + 6.0Rainfall − 0.2Rainfall2
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Indicator Variables



Indicator Variables

• If you have a binary explanatory variable, you can include it in
your model by representing it as an indicator variable.

• Indicator variable: Only takes on the values of 0 or 1.

• If you include it in your regression model, then you are
effectively fitting two lines that have the same slope but a
different intercept.
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Indicator Variables: Example

• Researchers studied the effect of Time and light intensity on
flower yield.

• Response variable: Flower yield (average number of flowers per
plant)

• Explanatory variables: Timing of light (early/late), intensity of
light (quantitative variable).

data(case0901)
head(case0901)

## Flowers Time Intensity
## 1 62.3 1 150
## 2 77.4 1 150
## 3 55.3 1 300
## 4 54.2 1 300
## 5 49.6 1 450
## 6 61.9 1 450
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Model

• µ(Flowers|Time, Intensity) = β0 + β1Time + β2Intensity

• Time can be made into an indicator variable (because it only
has two levels).

• The model at Time = 0 is

β0 + β2Intensity

• The model at Time = 1 is

β0 + β1 + β2Intensity

• Slope is β2 both times, but the lines have different intercepts
(parallel lines)
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Data

case0901$Time <- as.factor(case0901$Time)
qplot(Intensity, Flowers, color = Time, data = case0901)
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Fit

qplot(Intensity, Flowers, color = Time, data = case0901) +
geom_smooth(method = "lm", se = FALSE)
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One-Hot Transformation



One-hot transformation

• You can represent any categorical variable with k levels using
k − 1 indicator variables.

• This representation is called a “one-hot transformation” in the
machine learning community.

• Let X`i = 1 if observational unit i belongs to level `

• Let X`i = 0 if observational unit i does not belong to level `
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One-hot transformation: Example

• Let Z be a categorical variable with levels “Bob”, “Cindy”,
“Doug”

• X1i = 1 if Cindy and 0 otherwise.

• X2i = 1 if Doug and 0 otherwise.

• Whenever an observational unit is “Bob”, it has values X1i = 0
and X2i = 0

• Whenever an observational unit is “Cindy”, it has values
X1i = 1 and X2i = 0

• Whenever an observational unit is “Doug”, it has values
X1i = 0 and X2i = 1
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One-hot transformation: Example

• Let Z be a categorical variable with levels “Bob”, “Cindy”,
“Doug”
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One-hot Transformation: Example

• If we have a quantitative response and a categorical
explanatory variable, we can apply a one-hot
transformation and use multiple linear regression.

• Yi = β0 + β1X1i + β2X2i + εi

• Mean if “Bob”: β0 + β10 + β20 = β0

• Mean if “Cindy”: β0 + β11 + β20 = β0 + β1

• Mean if “Doug”: β0 + β10 + β21 = β0 + β2
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One-hot Transformation: Example

• This is equivalent to One-way ANOVA

• Multiple Regression: Yi = β0 + β1X1i + β2X2i + εi

• One-way ANOVA: Yij = µ+ αi + εij

• µ = β0, α2 = β1, α3 = β2

• In linear regression, X1i and X2i index the group status of
observational unit i .

• In ANOVA, i indexes the group status, and j indexes the
observational units in group i .
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One-hot transformation: Two-levels

• If a variable only takes on 2 levels, it can be represented by 1
indicator variable.

• Time takes on the levels Late and Early

• Let X1i = 0 if Late and X1i = 0 if Early.
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How to include categorical variables in R

• If the variable is a “factor”, then R will automatically apply a
one-hot transformation.

• You can check if a variable is a factor using the class()
function.

class(case0901$Time)

## [1] "factor"

• If it is not a factor, you can use as.factor() to convert it
to one.

case0901$Time <- as.factor(case0901$Time)
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Use R

• You can then fit the linear model as before.

lmout <- lm(Flowers ~ Time + Intensity, data = case0901)
coef(lmout)

## (Intercept) Time2 Intensity
## 71.30583 12.15833 -0.04047
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Interpreting Output

• Model: µ(Yi |Time, Intensity) = β0 + β1X1i + β2X2i

• X1i = 1 if Time is Late and 0 otherwise.

• X2i is the light intensity.

## (Intercept) Time2 Intensity
## 71.30583 12.15833 -0.04047

(Intercept) Time2 Intensity
β̂0 β̂1 β̂2
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Interactions



Interactions

• An interaction between two variables means that the slope with
respect to one variable changes with the value of the second
variable.

• µ(Yi |Time, Intensity) =
β0 + β1Time + β2Intensity + β3Time × Intensity

• When Time = 0, the model is

µ(Yi |Time, Intensity) = β0 + β2Intensity

• When Time = 1, the model is

µ(Yi |Time, Intensity) = (β0 + β1) + (β2 + β3)Intensity
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Interactions

• Slope when Time = 0: β2

• Slope when Time = 1: β2 + β3

• Intercept when Time = 0: β0

• Intercept when Time = 1: β0 + β1

• Each level of the categorical variable (Time) has its own line.
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No Interaction

• µ(Yi |Time, Intensity) = β0 + β1Time + β2Intensity
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Interaction

• µ(Yi |Time, Intensity) =
β0 + β1Time + β2Intensity + β3Time × Intensity
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Fitting Interactions in R

• µ(Yi |Time, Intensity) =
β0 + β1Time + β2Intensity + β3Time × Intensity

lmint <- lm(Flowers ~ Time * Intensity, data = case0901)
coef(lmint)

## (Intercept) Time2 Intensity Time2:Intensity
## 71.62333 11.52333 -0.04108 0.00121

(Intercept) Time2 Intensity Time2:Intensity
β̂0 β̂1 β̂2 β̂3
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Fitting Interactions in R

• Using * fits interactions along with all lower order terms.

• Using : just fits interactions.
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Interpreting Interactions

• Reconsider the brain weight data

• µ(Brain|Body , Litter) =
β0 + β1Body + β2Litter + β3Body × Litter

• What is the slope for Body at a given Litter size?

• What is the intercept for Body at a given Litter size?
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Intercept Considerations

• Interpreting models with interactions is difficult.

• Include them only if you have to.
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