Multiple Regression

David Gerard 2018-12-07

- Introduce Multiple Linear Regression
- Chapters 9 and 10 in the book.

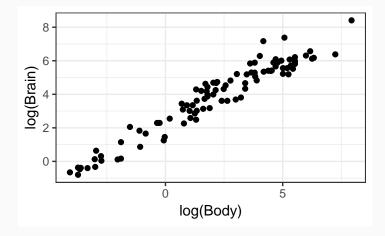
- What variables are associated with brain weight?
- Collected information on 96 different species.
- We know that body weight is already associated with brain weight,
 - So what variables are associated with brain weight after controlling for body weight.
- Possible variables: Body weight (kg), gestation period (days), litter size

library(Sleuth3)
data("case0902")
head(case0902)

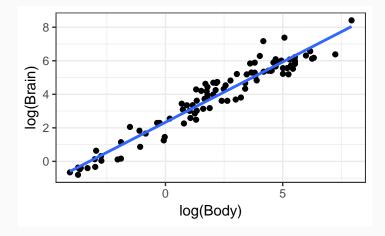
##		Species	Brain	Body	Gestation	Litter
##	1	Aardvark	9.6	2.20	31	5.0
##	2	Acouchis	9.9	0.78	98	1.2
##	3	African elephant	4480.0	2800.00	655	1.0
##	4	Agoutis	20.3	2.80	104	1.3
##	5	Axis deer	219.0	89.00	218	1.0
##	6	Badger	53.0	6.00	60	2.2

- One quantitative response variable (Y).
- One quantitative explanatory variable (X).
- The mean of Y is a linear function of X.
- Model the conditional distribution of Y given X.
- $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

Simple Linear Regression



Simple Linear Regression



Multiple Linear Regression Model

- One quantitative response (Y).
- **Multiple** quantitative explanatory variables $(X_1, X_2, ..., X_p)$.
- $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi} + \epsilon_i$

Multiple Linear Regression Model

- One quantitative response (Y).
- **Multiple** quantitative explanatory variables $(X_1, X_2, ..., X_p)$.

•
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi} + \epsilon_i$$

- E.g. X_{2i} is the value of the second explanatory variable for observational unit *i*.
- E.g., when we have two explanatory variables, this equation is

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$$

• ϵ_i is still ideally normally distributed with mean 0 and constant variance σ^2 .

Multiple Linear Regression: Interpreting Coefficients

- Consider Model $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$
- To interpret β_1 in a **randomized experiment**:
 - Conceptually fix X_{2i} at a value.
 - Add one to X_{1i}
 - Y_i changes by β_1
- β_1 is how much Y_i increases when we add one to X_{1i} but keep X_{2i} fixed.
- "A one-unit increase in light intensity causes the mean number of flowers to increase by β₁."

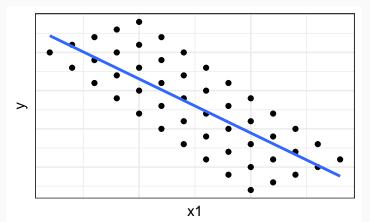
Multiple Linear Regression: Interpreting Coefficients

- Consider Model $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$
- To interpret β₁ in an observational study:
 - The X_i's cannot be fixed independently of one another.
 - Consider a subpopulation that has the same values of the X_j's, where j ≠ 1. Then the expected difference in means between species that differ in X₁ only by one is β₁.
- β₁ is the expected difference in Y's when we compare species with X₁ and X₁ + 1.
- "For any subpopulation of mammal species with the same body weight, species with a one-day longer gestation length tend to have a mean brain-weight β₁ larger."

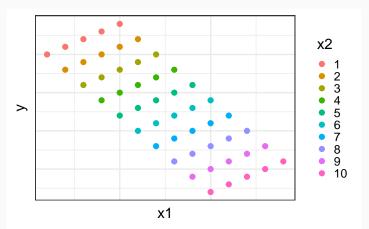
- $\mu(brain|gestation) = \beta_0 + \beta_1 gestation$
 - The mean of brain is equal to β_0 plust β_1 times the gestation time.
- $\mu(brain|gestation, body) = \beta_0 + \beta_1gestation + \beta_2body$
 - The mean of brain is equal to β₀ plust β₁ times the gestation time plus β₂ times the body weight.

- $\mu(brain|gestation) = \beta_0 + \beta_1 gestation$
 - β₁ is the mean difference in brain weight as we compare different gestation periords 1 day apart in the population of all mammal species.
- $\mu(brain|gestation, body) = \beta_0 + \beta_1gestation + \beta_2body$
 - β₁ is the mean difference in brain weight as we compare different gestation periords 1 day apart in subpopulations that have the same body weight.

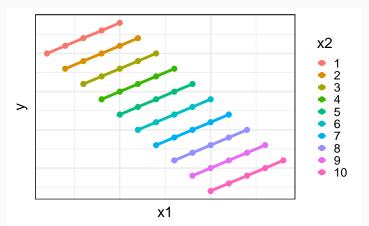
- $\mu(brain|gestation) = \beta_0 + \beta_1 gestation$
- Slope looks negative

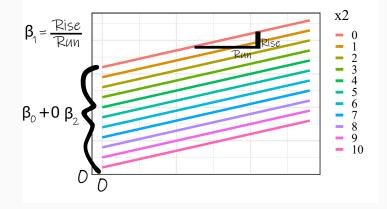


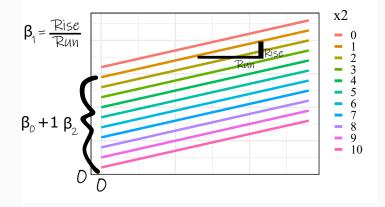
- $\mu(brain|gestation, body) = \beta_0 + \beta_1gestation + \beta_2body$
- Slope looks positive at each level of X₂

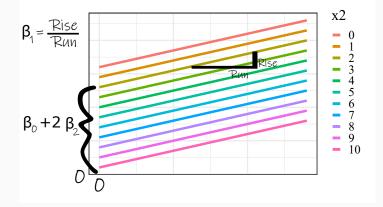


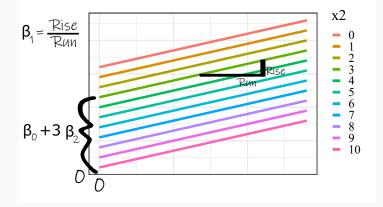
- $\mu(brain|gestation) = \beta_0 + \beta_1gestation + \beta_2body$
- Slope looks positive at each level of X₂

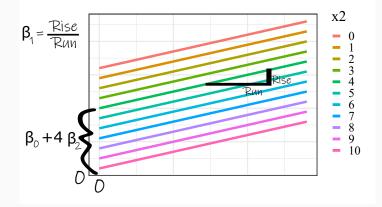












Fitting Multiple Linear Regression in R

• Want to fit:

 $\mu(brain|gestation, body) = \beta_0 + \beta_1 gestation + \beta_2 body$

- β_0 , β_1 , β_2 are parameters (we don't know them)
- We can **estimate** them by minimizing the sum of the square residuals.
- Residuals: $Y_i (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i})$
- The resulting estimates are the OLS (ordinary least squares) estimates: $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$

Syntax

• Want to fit:

 $\mu(brain|gestation, body) = \beta_0 + \beta_1 gestation + \beta_2 body$

• Use lm() and always save the output.

```
lmout <- lm(Brain ~ Gestation + Body, data = case0902)
lmout</pre>
```

```
##
## Call:
## Call:
## lm(formula = Brain ~ Gestation + Body, data = case0902)
##
## Coefficients:
## (Intercept) Gestation Body
## -112.19 1.45 1.03
```

Table

##

Call:

lm(formula = Brain ~ Gestation + Body, data = case0902)
##

Coefficients:

(Intercept) Gestation Body

-112.19 1.45 1.03

Interpreting output:

(Intercept) Gestation Body
$$\hat{\beta}_0$$
 $\hat{\beta}_1$ $\hat{\beta}_2$

•	Want	to	fit:	
---	------	----	------	--

 $\mu(brain|gestation, body) = \beta_0 + \beta_1 gestation + \beta_2 body + \beta_3 litter$

lmout

##

Call:

```
## lm(formula = Brain ~ Gestation + Body + Litter, data = 0
##
```

Coefficients:

(Intercept) Gestation Body Litter ## -225.292 1.809 0.986 27.649

Table

##

Call:

lm(formula = Brain ~ Gestation + Body + Litter, data = 0
##

Coefficients:

(Intercept) Gestation Body Litter ## -225.292 1.809 0.986 27.649

Interpreting output:

(Intercept)	Gestation	Body	Litter
$\hat{\beta}_0$	$\hat{\beta}_1$	$\hat{\beta}_2$	\hat{eta}_3

- We estimate that species with 1 day longer gestation time tend to have a brain weight 1.8 grams heavier, after adjusting for body weight and litter size.
- We estimate that species with an average body weight 1 kg heavier tend have a brain weight 0.99 grams heavier, after adjusting for gestation time and litter size.
- We estimate that species with a litter size of one offspring larger tend to have a brain weight 27.6 grams heavier, after adjusting for body weight and gestation time.

- We are usually interested in testing if $\beta_i = 0$.
- We are usually interested in getting confidence intervals on the β_i 's.
- We can use the usual *t*-tools to get these.

Inference in R

• $\mu(brain|gestation, body) = \beta_0 + \beta_1gestation + \beta_2body$ lmout <- lm(Brain ~ Gestation + Body, data = case0902) summary(lmout)

```
##
## Call:
## lm(formula = Brain ~ Gestation + Body, data = case0902)
##
## Residuals:
     Min 1Q Median 3Q
##
                                 Max
## -1091.5 -63.2 8.2 67.1 1025.0
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -112.1920 43.0595 -2.61 0.011
## Gestation 1.4499 0.2752 5.27 8.9e-07
## Body 1.0326 0.0903 11.44 < 2e-16
##
```

• $\mu(brain|gestation, body) = \beta_0 + \beta_1gestation + \beta_2body$

##			Est	imate	Std.	Error	t	value	Pr(> t)
##	(Interc	ept)	-11	2.192	43	3.0595	-	2.606	1.068e-02
##	Gestati	on		1.450	(0.2752		5.268	8.889e-07
##	Body			1.033	(0.0903	1	1.436	1.984e-19
		Estim	ate	Std. Er	rror t	value	I	Pr(> t)	
(h	ntercept)	$\hat{\beta}_0$		$SE(\hat{\beta}_0)$	Ê	$\hat{\beta}_0/SE(\hat{eta}_0)$) [p-value	for $H_0: \beta_0 = 0$
Gestation \hat{eta}_1		$\hat{\beta}_1$		$SE(\hat{\beta}_1)$	Ê	$\hat{\beta}_1/SE(\hat{\beta}_1)$) [p-value for $H_0: \beta_1 = 0$	
Body \hat{eta}_2			$SE(\hat{\beta}_2)$	Ê	$\hat{\beta}_2/SE(\hat{\beta}_2)$) [o-value f	for $H_0: \beta_2 = 0$	

confint(lmout)

##		2.5 %	97.5 %
##	(Intercept)	-197.6997	-26.684
##	Gestation	0.9033	1.996
##	Body	0.8533	1.212

- The interpretations of significance depends on what other variables are in the model.
- $\mu(brain|gestation, body) = \beta_0 + \beta_1 gestation$
- $H_0: \beta_1 = 0$ vs $H_A: \beta_1 \neq 0$
- Model under Null: $\mu(brain|gestation, body) = \beta_0$
- Model under Alternative:
 μ(brain|gestation, body) = β₀ + β₁gestation

- If we reject H₀, then we say "we have strong evidence that gestation is related to brain weight."
- If we fail to reject H₀, then we say "we do not have strong evidence that gestation is related to brain weight."

- The interpretations of significance depends on what other variables are in the model.
- $\mu(brain|gestation, body) = \beta_0 + \beta_1 gestation + \beta_2 body$

•
$$H_0: \beta_1 = 0 \text{ vs } H_A: \beta_1 \neq 0$$

- Model under Null: $\mu(brain|gestation, body) = \beta_0 + \beta_2 body$
- Model under Alternative: $\mu(brain|gestation, body) = \beta_0 + \beta_1 gestation + \beta_2 body$

- If we reject H₀, then we say "we have strong evidence that gestation is related to brain weight after adjusting for body size."
- If we fail to reject H₀, then we say "we do not have strong evidence that gestation is related to brain weight after adjusting for body size."