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Objectives

• Introduce Multiple Linear Regression

• Chapters 9 and 10 in the book.
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Brain Size

• What variables are associated with brain weight?

• Collected information on 96 different species.

• We know that body weight is already associated with brain
weight,

• So what variables are associated with brain weight after
controlling for body weight.

• Possible variables: Body weight (kg), gestation period (days),
litter size
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Brain Size

library(Sleuth3)
data("case0902")
head(case0902)

## Species Brain Body Gestation Litter
## 1 Aardvark 9.6 2.20 31 5.0
## 2 Acouchis 9.9 0.78 98 1.2
## 3 African elephant 4480.0 2800.00 655 1.0
## 4 Agoutis 20.3 2.80 104 1.3
## 5 Axis deer 219.0 89.00 218 1.0
## 6 Badger 53.0 6.00 60 2.2
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Simple Linear Regression

• One quantitative response variable (Y ).

• One quantitative explanatory variable (X ).

• The mean of Y is a linear function of X .

• Model the conditional distribution of Y given X .

• Yi = β0 + β1Xi + εi
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Simple Linear Regression
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Multiple Linear Regression Model

• One quantitative response (Y ).

• Multiple quantitative explanatory variables (X1,X2, . . . ,Xp).

• Yi = β0 + β1X1i + β2X2i + · · ·+ βpXpi + εi

• E.g. X2i is the value of the second explanatory variable for
observational unit i .

• E.g., when we have two explanatory variables, this equation is

Yi = β0 + β1X1i + β2X2i + εi

• εi is still ideally normally distributed with mean 0 and constant
variance σ2.
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Multiple Linear Regression: Interpreting Coefficients

• Consider Model Yi = β0 + β1X1i + β2X2i + εi

• To interpret β1 in a randomized experiment:

• Conceptually fix X2i at a value.

• Add one to X1i

• Yi changes by β1

• β1 is how much Yi increases when we add one to X1i but keep
X2i fixed.

• “A one-unit increase in light intensity causes the mean number
of flowers to increase by β1.”
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Multiple Linear Regression: Interpreting Coefficients

• Consider Model Yi = β0 + β1X1i + β2X2i + εi

• To interpret β1 in an observational study:

• The Xi ’s cannot be fixed independently of one another.

• Consider a subpopulation that has the same values of the Xj ’s,
where j 6= 1. Then the expected difference in means between
species that differ in X1 only by one is β1.

• β1 is the expected difference in Y ’s when we compare species
with X1 and X1 + 1.

• “For any subpopulation of mammal species with the same body
weight, species with a one-day longer gestation length tend to
have a mean brain-weight β1 larger.”
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A useful notation

• µ(brain|gestation) = β0 + β1gestation

• The mean of brain is equal to β0 plust β1 times the gestation
time.

• µ(brain|gestation, body) = β0 + β1gestation + β2body

• The mean of brain is equal to β0 plust β1 times the gestation
time plus β2 times the body weight.
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Interpretation of coefficients changes when the model differs.

• µ(brain|gestation) = β0 + β1gestation

• β1 is the mean difference in brain weight as we compare
different gestation periords 1 day apart in the population of
all mammal species.

• µ(brain|gestation, body) = β0 + β1gestation + β2body

• β1 is the mean difference in brain weight as we compare
different gestation periords 1 day apart in subpopulations
that have the same body weight.
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Interpretation of β1 without X2 in model

• µ(brain|gestation) = β0 + β1gestation

• Slope looks negative
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Interpretation of β1 with X2 in model

• µ(brain|gestation, body) = β0 + β1gestation + β2body

• Slope looks positive at each level of X2
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Interpretation of β1 with X2 in model

• µ(brain|gestation) = β0 + β1gestation + β2body

• Slope looks positive at each level of X2
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Interpretation of β1 with X2 in model
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Interpretation of β1 with X2 in model
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Interpretation of β1 with X2 in model
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Interpretation of β1 with X2 in model
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Interpretation of β1 with X2 in model
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Fitting Multiple Linear Regression in
R



How do we estimate the regression coefficients?

• Want to fit:
µ(brain|gestation, body) = β0 + β1gestation + β2body

• β0, β1, β2 are parameters (we don’t know them)

• We can estimate them by minimizing the sum of the square
residuals.

• Residuals: Yi − (β0 + β1X1i + β2X2i)

• The resulting estimates are the OLS (ordinary least squares)
estimates: β̂0, β̂1, β̂2
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Syntax

• Want to fit:
µ(brain|gestation, body) = β0 + β1gestation + β2body

• Use lm() and always save the output.

lmout <- lm(Brain ~ Gestation + Body, data = case0902)
lmout

##
## Call:
## lm(formula = Brain ~ Gestation + Body, data = case0902)
##
## Coefficients:
## (Intercept) Gestation Body
## -112.19 1.45 1.03
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Table

##
## Call:
## lm(formula = Brain ~ Gestation + Body, data = case0902)
##
## Coefficients:
## (Intercept) Gestation Body
## -112.19 1.45 1.03

• Interpreting output:

(Intercept) Gestation Body
β̂0 β̂1 β̂2
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Another Example

• Want to fit:
µ(brain|gestation, body) = β0 +β1gestation+β2body +β3litter

lmout <- lm(Brain ~ Gestation + Body + Litter,
data = case0902)

lmout

##
## Call:
## lm(formula = Brain ~ Gestation + Body + Litter, data = case0902)
##
## Coefficients:
## (Intercept) Gestation Body Litter
## -225.292 1.809 0.986 27.649
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Table

##
## Call:
## lm(formula = Brain ~ Gestation + Body + Litter, data = case0902)
##
## Coefficients:
## (Intercept) Gestation Body Litter
## -225.292 1.809 0.986 27.649

• Interpreting output:

(Intercept) Gestation Body Litter
β̂0 β̂1 β̂2 β̂3
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Specific Language we Use

• We estimate that species with 1 day longer gestation time tend
to have a brain weight 1.8 grams heavier, after adjusting for
body weight and litter size.

• We estimate that species with an average body weight 1 kg
heavier tend have a brain weight 0.99 grams heavier, after
adjusting for gestation time and litter size.

• We estimate that species with a litter size of one offspring
larger tend to have a brain weight 27.6 grams heavier, after
adjusting for body weight and gestation time.
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Inference

• We are usually interested in testing if βi = 0.

• We are usually interested in getting confidence intervals on the
βi ’s.

• We can use the usual t-tools to get these.
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Inference in R

• µ(brain|gestation, body) = β0 + β1gestation + β2body
lmout <- lm(Brain ~ Gestation + Body, data = case0902)
summary(lmout)

##
## Call:
## lm(formula = Brain ~ Gestation + Body, data = case0902)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1091.5 -63.2 8.2 67.1 1025.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -112.1920 43.0595 -2.61 0.011
## Gestation 1.4499 0.2752 5.27 8.9e-07
## Body 1.0326 0.0903 11.44 < 2e-16
##
## Residual standard error: 226 on 93 degrees of freedom
## Multiple R-squared: 0.805, Adjusted R-squared: 0.801
## F-statistic: 192 on 2 and 93 DF, p-value: <2e-16
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Inference in R

• µ(brain|gestation, body) = β0 + β1gestation + β2body

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -112.192 43.0595 -2.606 1.068e-02
## Gestation 1.450 0.2752 5.268 8.889e-07
## Body 1.033 0.0903 11.436 1.984e-19

Estimate Std. Error t value Pr(>|t|)
(Intercept) β̂0 SE(β̂0) β̂0/SE(β̂0) p-value for H0 : β0 = 0
Gestation β̂1 SE(β̂1) β̂1/SE(β̂1) p-value for H0 : β1 = 0
Body β̂2 SE(β̂2) β̂2/SE(β̂2) p-value for H0 : β2 = 0
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Confidence Intervals in R

confint(lmout)

## 2.5 % 97.5 %
## (Intercept) -197.6997 -26.684
## Gestation 0.9033 1.996
## Body 0.8533 1.212
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Interpreting p-values

• The interpretations of significance depends on what other
variables are in the model.

• µ(brain|gestation, body) = β0 + β1gestation

• H0 : β1 = 0 vs HA : β1 6= 0

• Model under Null: µ(brain|gestation, body) = β0

• Model under Alternative:
µ(brain|gestation, body) = β0 + β1gestation
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Language we use

• If we reject H0, then we say “we have strong evidence that
gestation is related to brain weight.”

• If we fail to reject H0, then we say “we do not have strong
evidence that gestation is related to brain weight.”
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Language we use

• If we reject H0, then we say “we have strong evidence that
gestation is related to brain weight after adjusting for body
size.”

• If we fail to reject H0, then we say “we do not have strong
evidence that gestation is related to brain weight after
adjusting for body size.”
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