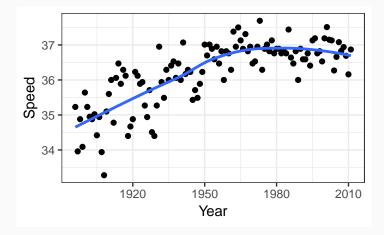
F-test in Multiple Regression

David Gerard 2018-12-07

- Test for including multiple variables at the same time.
- Section 10.3 in the book

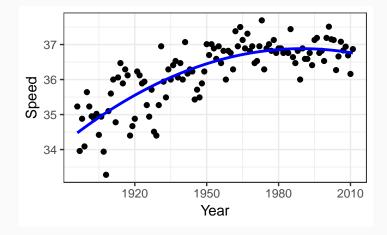
Case Study

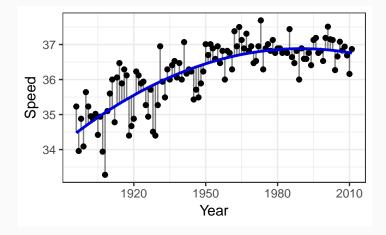

- Kentucky Derby
- Speed vs Year and Yeat².

library(Sleuth3)
data(ex0920)
head(ex0920)

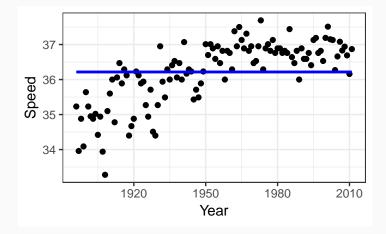
##		Year	Winner	Starters	NetToWinner	Time	Speed	Tı
##	1	1896	Ben Brush	8	4850	127.8	35.23	Dι
##	2	1897	Typhoon II	6	4850	132.5	33.96	He
##	3	1898	Plaudit	4	4850	129.0	34.88	(
##	4	1899	Manuel	5	4850	132.0	34.09	I
##	5	1900	Lieut. Gibson	7	4850	126.2	35.64	I
##	6	1901	His Eminence	5	4850	127.8	35.23	I

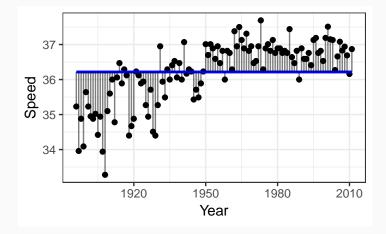
Year vs Speed


qplot(Year, Speed, data = ex0920) +
geom_smooth(se = FALSE)


- Get a *p*-value for the association between year and Speed.
- It is clear that a quadratic model would be better than a linear model.
- $\mu(Speed|Year) = \beta_0 + \beta_1 Year + \beta_2 Year^2$
- So to see if year is important, we need to test:
 - $H_0: \beta_1 = \beta_2 = 0$
 - H_A : either $\beta_1 \neq 0$ or $\beta_2 \neq 0$

- Full Model: $\mu(Speed | Year) = \beta_0 + \beta_1 Year + \beta_2 Year^2$
- Reduced Model: $\mu(Speed|Year) = \beta_0$
- Use *F*-test strategy to run this hypothesis test.
 - 1. Fit both full and reduced models.
 - 2. Calculate sum of squared residuals under both models and the corresponding degrees of freedom.
 - 3. Calculate the *F*-statistic.
 - 4. Compare to theoretical F-distribution under H_0


Fit Under Full


Residuals under Full

Fit under Reduced

Residuals under Reduced

• First, fit both models

```
ex0920$Year2 <- ex0920$Year ^ 2
lmfull <- lm(Speed ~ Year + Year2, data = ex0920)
lmreduced <- lm(Speed ~ 1, data = ex0920)</pre>
```

 Then use anova() with the reduced model as the first argument.

```
anova(lmreduced, lmfull)
```

```
## Analysis of Variance Table
##
## Model 1: Speed ~ 1
## Model 2: Speed ~ Year + Year2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 115 93.0
## 2 113 33.1 2 59.9 102 <2e-16</pre>
```

```
## Analysis of Variance Table
##
## Model 1: Speed ~ 1
## Model 2: Speed ~ Year + Year2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 115 93.0
## 2 113 33.1 2 59.9 102 <2e-16
  Res.Df RSS Df Sum of Sq F Pr(>F)
  df<sub>reduced</sub> RSS<sub>reduced</sub>
  df<sub>full</sub> RSS<sub>full</sub> df<sub>extra</sub> ESS
                                        F-stat p-value
```

- We can use the *F*-test for any two **nested** models.
- **Nested**: The reduced model is a special case of the full model by setting constraints on some of the parameters of the full.

- $\mu(Speed | Year, Starters) = \beta_0 + \beta_1 Year + \beta_2 Year^2 + \beta_3 Starters + \beta_4 Starters^2$
- $H_0: \beta_3 = \beta_4 = 0$
- H_A : either $\beta_3 \neq 0$ or $\beta_4 \neq 0$
- Full Model: $\mu(Speed | Year, Starters) = \beta_0 + \beta_1 Year + \beta_2 Year^2 + \beta_3 Starters + \beta_4 Starters^2$
- Reduced Model:

 μ (Speed|Year, Starters) = $\beta_0 + \beta_1$ Year + β_2 Year²

```
ex0920$Starters2 <- ex0920$Starters ^ 2
lmfull <- lm(Speed ~ Year + Year2 + Starters +</pre>
              Starters2, data = ex0920)
lmreduced <- lm(Speed ~ Year + Year2, data = ex0920)</pre>
anova(lmreduced, lmfull)
## Analysis of Variance Table
##
## Model 1: Speed ~ Year + Year2
## Model 2: Speed ~ Year + Year2 + Starters + Starters2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 113 33.1
## 2 111 30.9 2 2.18 3.92 0.023
```

Example of a non-nested model

- Model 1: $\mu(Speed | Year, Starters) = \beta_0 + \beta_1 Year + \beta_2 Year^2$
- Model 2: μ (Speed | Year, Starters) = $\beta_0 + \beta_1$ Starters + β_2 Starters²
- **Cannot** use an *F*-test to compare these two models.
- Why? Mathematical theory only gaurantees the *F*-distribution when the models are nested.
- When models are not nested, use adjusted R², C_p, AIC, or BIC methods from section 12.4 (more on this later).