Non-nested Comparisons

David Gerard 2018-12-07

Learning Objective

- Sections 10.4.1 and 12.4
- Choosing Between Non-nested Models

Case Study and EDA

Case Study: Sex Descrimination

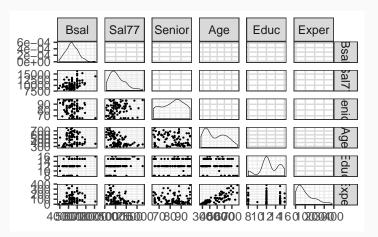
- Same study as in Case Study 0102
- Looked at beginning salary at a bank with respect to sex.
- Want to control for many different variables.

Case Study: Sex Descrimination

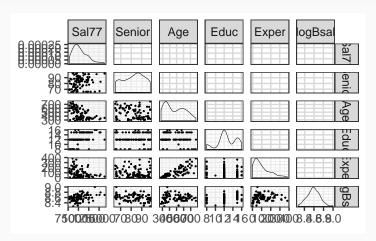
```
library(Sleuth3)
data(case1202)
head(case1202)
```

```
##
    Bsal Sal77 Sex Senior Age Educ Exper
## 1 5040 12420 Male
                      96 329
                               15
                                 14.0
  2 6300 12060 Male
                               15 72.0
                      82 357
## 3 6000 15120 Male
                      67 315
                               15 35.5
## 4 6000 16320 Male 97 354
                               12 24.0
## 5 6000 12300 Male
                      66 351
                               12 56.0
## 6 6840 10380 Male
                      92 374
                               15 41.5
```

EDA



EDA



EDA Summary

- Loging Bsal seems to help a lot.
- Age and Experience might need a quadratic transformation.

Step-wise Procedures (Section 12.3)

Step-wise Regression

- Start with a complicated model.
- Look at p-values (when testing that a coefficient is 0)
- Drop the one with the largest p-value.
- Continue until all p-values are less than some threshold (usually 0.05).
- Note, you cannot interpret p-values the way we define them anymore if you do this.

Step-wise Regression, the manual way

Step-wise Regression, the manual way

```
coef(summary(lm1))
```

```
##
                Estimate Std. Error t value Pr(>|t|)
  (Intercept)
               8.630e+00
                          2.139e-01 40.35158 1.155e-57
## Senior
              -3.242e-03
                          1.150e-03 -2.82072 5.948e-03
                          9.167e-04 -0.33749 7.366e-01
## Age
              -3.094e-04
## Age2
              -2.788e-08
                          8.828e-07 -0.03159 9.749e-01
## Educ
               2.063e-02
                          5.095e-03 4.04819 1.125e-04
                          6.091e-04 3.21735 1.825e-03
## Exper
               1.960e-03
## Exper2
              -4.098e-06
                          1.657e-06 -2.47275 1.538e-02
```

■ Drop Age2 (*p*-value of 0.97)

Step-wise Regression, the manual way

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	8.635e+00	1.324e-01	65.200	1.207e-75
##	Senior	-3.234e-03	1.114e-03	-2.902	4.693e-03
##	Age	-3.380e-04	1.449e-04	-2.332	2.200e-02
##	Educ	2.065e-02	5.003e-03	4.128	8.372e-05
##	Exper	1.970e-03	5.053e-04	3.900	1.892e-04
##	Exper2	-4.130e-06	1.301e-06	-3.175	2.071e-03

Step-wise Regression

- Can also start at the simplest model,
 - add the variable that has the smallest p-value
 - continue until no new variables would have a p-value less than 0.05
- Can also both add and drop variables based on p-values.

Step-wise Regression in R

##

##

Exper2

- Use the step() function to do this automatically
 - It actually uses AIC (not p-values) to choose between models, but the idea is similar. See later for AIC.

```
lm1 <- lm(logBsal ~ Senior + Age + Age2 +</pre>
            Senior + Educ + Exper + Exper2,
          data = case1202)
stepout <- step(object = lm1, trace = FALSE)</pre>
stepout
##
## Call:
## lm(formula = logBsal ~ Senior + Age + Educ + Exper + Exper2,
##
       data = case1202)
##
## Coefficients:
## (Intercept)
                     Senior
                                      Age
                                                  Educ
                                                               Exper
```

8.63e+00 -3.23e-03 -3.38e-04 2.07e-02

1.97e-03

Step-wise Regression in R

 The output of step() is also an 1m object, so you can get coefficients, p-values, confidence intervals, fits, predictions, residuals, etc directly from it.

confint(stepout)

```
## 2.5 % 97.5 %

## (Intercept) 8.372e+00 8.898e+00

## Senior -5.450e-03 -1.019e-03

## Age -6.260e-04 -4.994e-05

## Educ 1.071e-02 3.060e-02

## Exper 9.661e-04 2.975e-03

## Exper2 -6.716e-06 -1.545e-06
```

Comparing Non-nested Models (Section 12.4)

Motivation

- What if we want to decide between the following two models
- $\mu(logBsal|...) = Senior + Educ + Exper + Exper^2$
- $\mu(logBsal|...) = Senior + Educ + Age + Age^2$
- These models are non-nested, so we cannot apply F-test techniques to them.

BIC and AIC

- BIC (Bayesian Information Criterion) and AIC (Akaike Information Criterion) return the log of the sum of square residuals plus a penalty due to the number of parameters in the model.
- Best model has the smallest BIC or AIC.
- BIC: $n \log(SSR/n) + \log(n)(p+1)$
- AIC: $n \log(SSR/n) + 2(p+1)$
- BIC penalizes more when the sample size is larger.
- BIC is better for model selection (get interpretable model), AIC is better for prediction (goal is prediction).

BIC and AIC in R

[1] -146.4

AIC(lm mod2)

• Fit both models, then use the AIC() and BIC() functions.

```
lm mod1 <- lm(logBsal ~ Senior + Educ + Exper + Exper2,</pre>
               data = case1202)
lm_mod2 <- lm(logBsal ~ Senior + Educ + Age + Age2,</pre>
               data = case1202)
BIC(lm mod1)
## [1] -131.2
BIC(lm mod2)
## [1] -123.6
AIC(lm mod1)
```

Mallow's C_p statistic

- $Bias(\hat{Y}_i) = \mu(\hat{Y}_i) \mu(Y_i)$
- $MSE(\hat{Y}_i) = Bias(\hat{Y}_i)^2 + Var(\hat{Y}_i)$
- $TMSE = \sum_{i=1}^{n} MSE(\hat{Y}_i)$
- We don't know the TMSE, but Mallow's C_p estimates it.

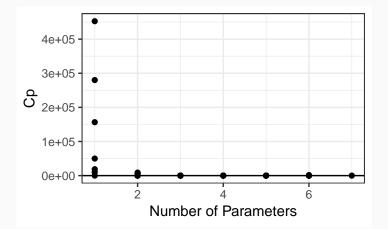
C_p plot

- You obtain Mallow's C_p for every possible model.
- Only feasible if you have less than p = 10 or so explanatory variables (2^p models are possible).
- Plot C_p on the y-axis and the number of parameters on the x-axis.
- Models below the y = x line are candidate models
 - Models without bias should have a C_p of about p
 - So if C_p is below p, the model probably does not have any bias issues.

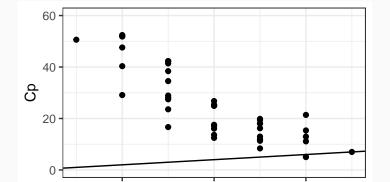
C_p in R

We will use the leaps() function in the leaps library.

C_p in R



C_p in R



Back to Case Study

Back to Case Study

We chose a model with

$$\mu(logBsal|...) = Senior + Age + Senior + Educ + Exper + Exper^2$$

 Now let's answer the question if Sex is still associated with base salary after adjusting for these variables.

Results

```
Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 8.567e+00 1.097e-01 78.1245 1.199e-81
## SexMale
            1.405e-01 2.167e-02 6.4842 5.401e-09
             -3.261e-03
## Senior
                          9.186e-04 -3.5497 6.279e-04
              -2.079e-05 1.291e-04 -0.1611 8.724e-01
## Age
## Educ
               1.373e-02 4.260e-03 3.2232 1.792e-03
## Exper
               1.549e-03 4.215e-04 3.6755 4.123e-04
## Exper2
             -4.128e-06 1.072e-06 -3.8502 2.264e-04
```

Results

cbind(coef(lmfinal), confint(lmfinal))

```
## 2.5 % 97.5 %
## (Intercept) 8.567e+00 8.349e+00 8.785e+00
## SexMale 1.405e-01 9.742e-02 1.836e-01
## Senior -3.261e-03 -5.087e-03 -1.435e-03
## Age -2.079e-05 -2.774e-04 2.358e-04
## Educ 1.373e-02 5.262e-03 2.220e-02
## Exper 1.549e-03 7.113e-04 2.387e-03
## Exper2 -4.128e-06 -6.260e-06 -1.997e-06
```

Results

```
exp(coef(lmfinal)[2])

## SexMale
## 1.151

exp(confint(lmfinal)[2, ])

## 2.5 % 97.5 %
## 1.102 1.201
```