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Learning Objective

= Sections 10.4.1 and 12.4

= Choosing Between Non-nested Models



Case Study and EDA



Case Study: Sex Descrimination

= Same study as in Case Study 0102
= Looked at beginning salary at a bank with respect to sex.

= Want to control for many different variables.



Case Study: Sex Descrimination

library(Sleuth3)
data(casel202)
head(case1202)

##  Bsal Sal77 Sex Senior Age Educ Exper

## 1 5040 12420 Male 96 329 15 14.0
## 2 6300 12060 Male 82 357 15 72.0
## 3 6000 15120 Male 67 315 156 35.5
## 4 6000 16320 Male 97 354 12 24.0
## 5 6000 12300 Male 66 351 12 56.0
## 6 6840 10380 Male 92 374 15 41.5



library(GGally)
ggpairs(casel1202, columns = c(1, 2, 4, 5, 6, 7),
aes(size = I(0.1)))
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casel202$logBsal <- log(casel1202$Bsal)
ggpairs(case1202, columns = c(2, 4, 5, 6, 7, 8),
aes(size = I(0.1)))
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EDA Summary

= Loging Bsal seems to help a lot.

= Age and Experience might need a quadratic transformation.



Step-wise Procedures (Section 12.3)



Step-wise Regression

= Start with a complicated model.
= Look at p-values (when testing that a coefficient is 0)
= Drop the one with the largest p-value.

= Continue until all p-values are less than some threshold (usually
0.05).

= Note, you cannot interpret p-values the way we define them

anymore if you do this.



Step-wise Regression, the manual way

casel202$Age2  <- casel202$Age ~ 2
casel2028Exper2 <- casel202$Exper ~ 2
Iml <- 1m(logBsal ~ Senior + Age + Age2 +
Senior + Educ + Exper + Exper2,
data = casel202)



Step-wise Regression, the manual way

coef (summary (1ml))

## Estimate Std. Error t value Pr(>|tl)
## (Intercept) 8.630e+00 2.139e-01 40.35158 1.155e-57
## Senior -3.242e-03 1.150e-03 -2.82072 5.948e-03
## Age -3.094e-04 9.167e-04 -0.33749 7.366e-01
## Age2 -2.788e-08 8.828e-07 -0.03159 9.749e-01
## Educ 2.063e-02 5.095e-03 4.04819 1.125e-04
## Exper 1.960e-03 6.091e-04 3.21735 1.825e-03
## Exper2 -4.098e-06 1.657e-06 -2.47275 1.538e-02

= Drop Age2 (p-value of 0.97)
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Step-wise Regression, the manual way

#i# Estimate Std. Error t value Pr(>|tl)
## (Intercept) 8.635e+00 1.324e-01 65.200 1.207e-75
## Senior -3.234e-03 1.114e-03 -2.902 4.693e-03
## Age -3.380e-04 1.449e-04 -2.332 2.200e-02
## Educ 2.065e-02 5.003e-03 4.128 8.372e-05
## Exper 1.970e-03 5.053e-04 3.900 1.892e-04
## Exper?2 -4.130e-06 1.301e-06 -3.175 2.071e-03
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Step-wise Regression

= Can also start at the simplest model,
= add the variable that has the smallest p-value

= continue until no new variables would have a p-value less than
0.05

= Can also both add and drop variables based on p-values.
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Step-wise Regression in R

= Use the step() function to do this automatically
= It actually uses AIC (not p-values) to choose between models,
but the idea is similar. See later for AIC.

Iml <- Im(logBsal ~ Senior + Age + Age2 +
Senior + Educ + Exper + Exper2,
data = casel202)
stepout <- step(object = 1lml, trace = FALSE)
stepout

#i#

## Call:

## Im(formula = logBsal ~ Senior + Age + Educ + Exper + Exper2,

#it data = casel1202)

#i#

## Coefficients:

## (Intercept) Senior Age Educ Exper
## 8.63e+00 -3.23e-03 -3.38e-04 2.07e-02 1.97e-03
## Exper2



Step-wise Regression in R

= The output of step() is also an 1m object, so you can get
coefficients, p-values, confidence intervals, fits, predictions,
residuals, etc directly from it.

confint (stepout)

## 2.5 % 97.5 %
## (Intercept) 8.372e+00 8.898e+00
## Senior -5.450e-03 -1.019e-03
## Age -6.260e-04 -4.994e-05
## Educ 1.071e-02 3.060e-02
## Exper 9.661e-04 2.975e-03
## Exper2 -6.716e-06 -1.545e-06
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Comparing Non-nested Models
(Section 12.4)




= What if we want to decide between the following two models
= i(logBsal|...) = Senior + Educ + Exper + Exper?
= u(logBsall...) = Senior + Educ + Age + Age?

= These models are non-nested, so we cannot apply F-test
techniques to them.
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BIC and AIC

= BIC (Bayesian Information Criterion) and AIC (Akaike
Information Criterion) return the log of the sum of square
residuals plus a penalty due to the number of parameters in
the model.

= Best model has the smallest BIC or AIC.

» BIC: nlog(SSR/n) + log(n)(p + 1)

= AIC: nlog(SSR/n)+2(p+1)

= BIC penalizes more when the sample size is larger.

= BIC is better for model selection (get interpretable model), AIC

is better for prediction (goal is prediction).
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BIC and AIC in R

= Fit both models, then use the AIC() and BIC() functions.

Im_modl <- 1m(logBsal ~ Senior + Educ + Exper + Exper2,
data = casel202)

1m_mod2 <- 1m(logBsal ~ Senior + Educ + Age + Age2,
data = casel202)

BIC(1m_mod1)

## [1] -131.2

BIC(1m_mod2)

## [1] -123.6

AIC(1m_mod1)

## [1] -146.4
AIC(1m_mod?2) 17



Mallow’s C, statistic

A

Bias(Y;) = M(VA/,) — u(Y7)
= MSE(Y;) = Bias(Y;)? + Var(V;)

= TMSE = Y7, MSE(Y))

= We don’t know the TMSE, but Mallow's C, estimates it.
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You obtain Mallow's C, for every possible model.

Only feasible if you have less than p = 10 or so explanatory
variables (2P models are possible).

Plot C, on the y-axis and the number of parameters on the
X-axis.

Models below the y = x line are candidate models
= Models without bias should have a C, of about p

= Soif C, is below p, the model probably does not have any bias
issues.
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= We will use the leaps() function in the leaps library.

library(leaps)
Iml <- 1m(logBsal ~ Senior + Age + Age2 +
Senior + Educ + Exper + Exper2,
data = casel202)
X <- model.matrix(1ml)

leapsout <- leaps(x = X,
y = casel202$logBsal,
int = FALSE)
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(, inR

gplot(leapsout$size, leapsout$Cp,
xlab = "Number of Parameters",
ylab = "Cp") +
geom_abline(slope = 1, intercept = 0)

[ )
4e+05 A
3e+054
o
O 2e+054
[ )
1e+05 4
[ )
0e+00 8 o o o o

Number of Parameters 21



(, inR

goodmodel <- leapsout$Cp < 1000
gplot (leapsout$size [goodmodel], leapsout$Cpl[goodmodel],
xlab = "Number of Parameters",
ylab = "Cp") +
geom_abline(slope = 1, intercept = 0) +
y1im(0, 60)
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Back to Case Study




Back to Case Study

= We chose a model with

(logBsal|...) = Senior + Age+ Senior + Educ+ Exper + Exper?

= Now let’s answer the question if Sex is still associated with
base salary after adjusting for these variables.
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IIHEHHH%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Imfinal <- 1lm(logBsal ~ Sex + Senior + Age +
Senior + Educ + Exper + Exper2,
data = case1202)

coef (summary (lmfinal))

#it Estimate Std. Error t value Pr(>|tl)
## (Intercept) 8.567e+00 1.097e-01 78.1245 1.199e-81
## SexMale 1.405e-01 2.167e-02 6.4842 5.401e-09
## Senior -3.261e-03 9.186e-04 -3.5497 6.279e-04
## Age -2.079e-05 1.291e-04 -0.1611 8.724e-01
## Educ 1.373e-02 4.260e-03 3.2232 1.792e-03
## Exper 1.549e-03 4.215e-04 3.6755 4.123e-04
## Exper?2 -4.128e-06 1.072e-06 -3.8502 2.264e-04
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IIHEHHH%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

cbind(coef (Imfinal), confint(lmfinal))

## 2.5 % 97.5 %
## (Intercept) 8.567e+00 8.349e+00 8.785e+00
## SexMale 1.405e-01 9.742e-02 1.836e-01
## Senior -3.261e-03 -5.087e-03 -1.435e-03
## Age -2.079e-05 -2.774e-04 2.358e-04
## Educ 1.373e-02 5.262e-03 2.220e-02
## Exper 1.549e-03 7.113e-04 2.387e-03

## Exper2 -4.128e-06 -6.260e-06 -1.997e-06
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IIHEHHH%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

exp(coef (Imfinal) [2])

## SexMale
it 1.151

exp(confint(Imfinal) [2, ])

# 2.5 % 97.5 %
## 1.102 1.201
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