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Learning Objective

• Sections 11.3 and 11.4

• Detect outliers in multiple linear regression

• Know how to treat outliers in multiple linear regression.
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Case Study: Blood Brain Barrier

• A new treatment was proposed to disrupt the blood-brain
barrier (to let drugs enter the brain).

• Rats were induced to have brain tumors.

• Rats were randomized to receive either the treatment or a
control.

• Response: ratio of drug concentration in brain to drug
concentration in liver.

• Designed explanatory variables: sacrifice time,
treatment/control.

• They measured other variables that might influence the
response: days post inoculation, tumor weight, initial weight,
weight loss.
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Case Study: Blood Brain Barrier

library(Sleuth3)
data(case1102)
case1102$Ratio <- case1102$Brain / case1102$Liver
head(case1102)

## Brain Liver Time Treatment Days Sex Weight Loss Tumor Ratio
## 1 41081 1456164 0.5 BD 10 Female 239 5.9 221 0.02821
## 2 44286 1602171 0.5 BD 10 Female 225 4.0 246 0.02764
## 3 102926 1601936 0.5 BD 10 Female 224 -4.9 61 0.06425
## 4 25927 1776411 0.5 BD 10 Female 184 9.8 168 0.01460
## 5 42643 1351184 0.5 BD 10 Female 250 6.0 164 0.03156
## 6 31342 1790863 0.5 NS 10 Female 196 7.7 260 0.01750
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Step 1: Make a lot of scatterplots

qplot(Time, Ratio, color = Treatment,
data = case1102)
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Step 1: Make a lot of scatterplots

qplot(Time, log(Ratio), color = Treatment,
data = case1102)
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Step 1: Make a lot of scatterplots

qplot(log(Time), log(Ratio), color = Treatment,
data = case1102)
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Step 1: Make a lot of scatterplots

case1102$logTime <- log(case1102$Time)
case1102$logRatio <- log(case1102$Ratio)
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Step 1: Make a lot of scatterplots (color coded by Sex)
library(GGally)
ggpairs(case1102, columns = c(5, 7, 8, 9, 11, 12), aes(size = I(0.2), color = Sex))
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Step 1: Make a lot of scatterplots (color coded by Treatment)
ggpairs(case1102, columns = c(5, 7, 8, 9, 11, 12), aes(size = I(0.2), color = Treatment))
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Conclusions

• logRatio is associated with logTime, Sex, Treatment,
Weight, and Days.

• No other transformations are needed.
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Step 2: Fit a rich model and check residuals.

• As an initial fit for a rich model, we’ll include all explanatory
variables and use Time as a factor (categorical variable).

µ(logRatio|logTime,Treatment,Days,Sex ,Weight, Loss,Tumor)
= logTime + Treatment + logtime × Treatment + Days + Sex
+ Weight + Loss + Tumor

lmrich <- lm(logRatio ~ as.factor(logTime) * Treatment +
Sex + Weight + Loss + Tumor,

data = case1102)

resvec <- resid(lmrich)
fitvec <- fitted(lmrich)
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Step 2: Fit a rich model and check residuals.

qplot(fitvec, resvec)
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Step 2: Conclusions

• Notice two points that are possibly outlying observations.

• Move on to formal evaluations of influence.
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Step 3: Case-Influence Statistics

• Case-Influence Statistics: Numerical Measures of how
influential a single observation is to the linear regression.
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Step 3: Leverage

• Leverage: how far away an observational units explanatory
variables are from the rest of the group.
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Step 3: Leverage

• Histograms of both variables don’t show that this is an extreme
point
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Step 3: Leverage

• Histograms of both variables don’t show that this is an extreme
point
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Step 3: Leverage

• It is even more difficult when you have more than two
explanatory variables.

• Leverage measures how far away from the cloud of points an
observation is.

• Always greater than 0.

• Typical leverage values are around p/n, where p = number of
parameters and n = number of observations.

• Rule of thumb: Points with leverage values over 2p/n have
high leverage.
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Step 3: Leverage in R

n <- nrow(case1102)
p <- n - df.residual(lmrich)
lev_vec <- hatvalues(lmrich) ## gets leverage
qplot(x = seq_along(lev_vec), lev_vec, geom = "point") +

geom_hline(yintercept = 2 * p / n) +
xlab("Observation Number") + ylab("Leverage")
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Step 3: Studentized Residuals

• Residuals are expected to have different variances depending on
how far away from the cloud they are.

• Studentized residuals calculate the number of standard
deviations away from 0 a residual is.

• Expect about 95% of residuals to fall inside of 2 standard
deviations.

• But expect 5% to fall outside of 2 standard deviations.
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Step 3: Studentized Residuals in R

stud_res <- rstudent(lmrich)
qplot(fitvec, stud_res) + geom_hline(yintercept = 0) +

geom_hline(yintercept = 2, lty = 2) +
geom_hline(yintercept = -2, lty = 2)
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Step 3: Cook’s Distance

• Cooks distance: Measures overall influence of an observational
unit.

• Idea: Refit regression wihout observatioanl unit, see how much
the fits change. Average over all observational units.

• Cooks distance is always greater than 0.

• Rule of thumb: If cooks distance is greater than 1, then this
indicates a large influence.
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Step3: Cook’s Distance in R

cook_vec <- cooks.distance(lmrich)
qplot(x = seq_along(cook_vec), cook_vec, geom = "point") +

geom_hline(yintercept = 1)
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Step 3: Conclusions

• The influential plots seems to indicate no major influential
points.
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Step 4: What if have outliers?

• We can check the values of the extreme observations.

• If they have weird X values, then we can omit them from the
data and state that the scope of inference is only valid for a
subset of X values.

• E.g. if all mice have weight less than 300 g, but we have one
that is 350, then we can remove that mouse and state that our
results are only for mice less than 300 g.
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Step 4: What if have outliers?

• To be safe, we can fit our finalized model (not the rich) both
with and without the outliers.

• If results don’t change, keep the outliers.

• If results change, report both results, or try a more robust
method.
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