Databases and dbplyr
David Gerard
2019-02-20

Learning Objectives

e Using dplyr-like syntax for databases.
e Introduction to dbplyr

dbplyr

e SQL is a language used to query from relational datasets.
o dplyr basically implements the most common actions in SQL (but SQL can do more).

o We'll use a soccer dataset to demonstrate how to use dplyr (instead of SQL) syntax when interacting
with a database. Download and unzip the soccer database from https://dcgerard.github.io/stat 412
612/data.html.

e We'll use the dbplyr package to interact with databases.
install.packages("dbplyr")

library(tidyverse)
library(dbplyr)
e dbplyr allows you to work with databases as if you are using dplyr.

o You'll also need to install the RSQLite package. There are different ways to create/access/update/delete
data from relational databases, and RSQLite provides an R interface for one of these ways.

install.packages("RSQLite")

library (RSQLite)

o If your database uses a different engine, you’ll need to download other packages to interact with it (see
Introduction to dbplyr)

o First, we’ll tell R where the database is using dbConnect (), (you might need to change the path).

con <- dbConnect(drv = SQLite(), dbname = "../../data/soccer/soccer.sqlite")

o Now we’ll list the data frames available in the connection we just created.

dbListTables(con)

[1] "Country" "League" "Match"
[4] "Player" "Player_Attributes" "Team"
[7] "Team_Attributes" "sqlite_sequence"

e Use tbl() to make a reference to the tables in con.

Team_db <- tbl(con, "Team")
Team_at_db <- tbl(con, "Team_ Attributes")
Country_db <- tbl(con, "Country")

https://cran.r-project.org/web/packages/dbplyr/vignettes/dbplyr.html
https://en.wikipedia.org/wiki/SQL
https://dcgerard.github.io/stat_412_612/data.html
https://dcgerard.github.io/stat_412_612/data.html
https://cran.r-project.org/web/packages/dbplyr/vignettes/dbplyr.html

League_db <- tbl(con, "League")
Match_db <- tbl(con, "Match")

We can now interact with all of these data frames mostly like if they were in memory (with some
limitations).

head (Country_db)

Source: lazy query [7?7 x 2]

Database: sqlite 3.22.0

[/home/david/Dropbox/teaching/stat_412_612/data/soccer/soccer.sqlite]
#i# id name

<int> <chr>

1 1 Belgium
2 1729 England
3 4769 France

4 7809 Germany
5 10257 Italy
6 13274 Netherlands

head (Match_db)

Source: lazy query [?77 x 115]
Database: sqlite 3.22.0
[/home/david/Dropbox/teaching/stat_412_612/data/soccer/soccer.sqlite]

id country_id league_id season stage date match_api_id

<int> <int> <int> <chr> <int> <chr> <int>

1 1 1 2008/~ 1 2008~ 492473

2 1 1 2008/~ 1 2008~ 492474

#it 3 1 1 2008/~ 1 2008~ 492475

4 1 1 2008/~ 1 2008~ 492476

5 1 1 2008/~ 1 2008~ 492477

6 1 1 2008/~ 1 2008~ 492478

. with 108 more variables: home_team_api_id <int>,

away_team_api_id <int>, home_team_goal <int>, away_team_goal <int>,
home_player_X1 <int>, home_player_X2 <int>, home_player_X3 <int>,
home_player_X4 <int>, home_player_X5 <int>, home_player_X6 <int>,
home_player_X7 <int>, home_player_X8 <int>, home_player_X9 <int>,
home_player_X10 <int>, home_player_X11 <int>, away_player_X1 <int>,

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

away_player_X2 <int>, away_player_X3 <int>, away_player_X4 <int>,
away_player_X5 <int>, away_player_X6 <int>, away_player_X7 <int>,
away_player_X8 <int>, away_player_X9 <int>, away_player_X10 <int>,
away_player_X11 <int>, home_player_Y1 <int>, home_player_Y2 <int>,
home_player_Y3 <int>, home_player_Y4 <int>, home_player_Y5 <int>,
home_player_Y6 <int>, home_player_Y7 <int>, home_player_Y8 <int>,
home_player_Y9 <int>, home_player_Y10 <int>, home_player_Y11l <int>,
away_player_Y1 <int>, away_player_Y2 <int>, away_player_Y3 <int>,
away_player_Y4 <int>, away_player_Y5 <int>, away_player_Y6 <int>,
away_player_Y7 <int>, away_player_Y8 <int>, away_player_Y9 <int>,
away_player_Y10 <int>, away_player_Y11l <int>, home_player_1 <int>,
home_player_2 <int>, home_player_3 <int>, home_player_4 <int>,
home_player_5 <int>, home_player_6 <int>, home_player_7 <int>,
home_player_8 <int>, home_player_9 <int>, home_player_10 <int>,
home_player_11 <int>, away_player_1 <int>, away_player_2 <int>,
away_player_3 <int>, away_player_4 <int>, away_player_5 <int>,

H HF H A HFHFHFHRAIFHR A FAFFEFHFEFHFEFHRHHHHOOOODD WD~

away_player_6 <int>, away_player_7 <int>, away_player_8 <int>,

away_player_9 <int>, away_player_10 <int>, away_player_11 <int>,

goal <chr>, shoton <chr>, shotoff <chr>, foulcommit <chr>, card <chr>,
cross <chr>, corner <chr>, possession <chr>, B365H <dbl>, B365D <dbl>,
#4 # B365A <dbl>, BWH <dbl>, BWD <dbl>, BWA <dbl>, IWH <dbl>, IWD <dbl>,

IWA <dbl>, LBH <dbl>, LBD <dbl>, LBA <dbl>, PSH <dbl>, PSD <dbl>,

PSA <dbl>, WHH <dbl>, WHD <dbl>, WHA <dbl>, SJH <dbl>, SJD <dbl>,

SJA <dbl>, VCH <dbl>,

Match_db %>%
select(id:away_team_goal)

Source: lazy query [7?7 x 11]
Database: sqlite 3.22.0
[/home/david/Dropbox/teaching/stat_412_612/data/soccer/soccer.sqlite]

id country_id league_id season stage date match_api_id
#it <int> <int> <int> <chr> <int> <chr> <int>
1 1 1 1 2008/~ 1 2008~ 492473
2 2 1 1 2008/~ 1 2008~ 492474
3 3 1 1 2008/~ 1 2008~ 492475
4 4 1 1 2008/~ 1 2008~ 492476
5 5 1 1 2008/~ 1 2008~ 492477
6 6 1 1 2008/~ 1 2008~ 492478
7 7 1 1 2008/~ 1 2008~ 492479
8 8 1 1 2008/~ 1 2008~ 492480
9 9 1 1 2008/~ 1 2008~ 492481
10 10 1 1 2008/~ 10 2008~ 492564
... with more rows, and 4 more variables: home_team_api_id <int>,

away_team_api_id <int>, home_team_goal <int>, away_team_goal <int>
names (Match_db) ## won't work

[1] "src" "OPS"

Once you select the variables you want and the observations you want, you should use collect() to
get the data frame into memory so that you can have all of the functionality of R (e.g., gather () and
spread () will only work on in-memory data frames).

Match_db %>%
select(id:away_team_goal) %>%
collect() —>
Match

Team_db %>%
collect() ->
Team

Country_db %>
collect() —>
Country

The following will return a data frame telling you where each team is from.

Match %>%
select(country_id, home_team_api_id, away_team_api_id) %>’
gather(-country_id, key = "home_away", value = "team_api_id") %>%

select (~home_away) %>’
distinct() %>%
left_join(Team, by = "team_api_id") %>%

left_join(Country, by = c("country_id" = "id")) %>%
select(team_long_name, team_short_name, name) %>
rename (country_name = name)

A tibble: 299 x 3

team_long_name team_short_name country_name
#i# <chr> <chr> <chr>
1 KRC Genk GEN Belgium
2 SV Zulte-Waregem ZUL Belgium
3 KSV Cercle Brugge CEB Belgium
4 KAA Gent GEN Belgium
5 FCV Dender EH DEN Belgium
6 KV Mechelen MEC Belgium
7 KSV Roeselare ROS Belgium
8 Tubize TUB Belgium
9 KVC Westerlo WES Belgium
10 Club Brugge KV CLB Belgium
... with 289 more rows

Exercise: Extract all matches from the England Premier League and calculate the mean team
difference (average of home team goals minus away team goals) each day in the "2010/2011" season.
Plot this proportion against time. (hint: you’ll need separate date and time. You’ll also need to use
before you plot parse_date()).

Your plot should look like this:

4 4

Mean Difference
o

Oct Jan Apr
Date

	Learning Objectives
	dbplyr

