
Strings and Regular Expressions
David Gerard
2019-10-24

Learning Objectives

• Manipulating strings with the stringr package.
• Regular expressions
• Chapter 14 of RDS.
• Work with Strings Cheatsheet.
• Stringr Overview.

Strings

• In R, strings (also called “characters”) are created and displayed within quotes:

x <- "I am a string!"
x

[1] "I am a string!"

• Anything within quotes is a string, even numbers!

y <- "3"
class(y)

[1] "character"

• You can have a vector of strings.

x <- c("I", "am", "a", "string", "vector")
x[2:3]

[1] "am" "a"

• The backslash "\" means that what is after the backslash is special in some way. For example, if you
want to put a quotation mark in a string, you can “escape” the quotation mark with a backslash.

x <- "As Tolkein said, \"Not all those who wonder are lost\""
writeLines(x)

As Tolkein said, "Not all those who wonder are lost"

• Above, writeLines() will print out the string itself. print() will print out the printed representation
of the string (with backslashes and all).

1

https://r4ds.had.co.nz/
https://github.com/rstudio/cheatsheets/blob/master/strings.pdf
https://stringr.tidyverse.org/

print(x)

[1] "As Tolkein said, \"Not all those who wonder are lost\""

• "\n" represents a new line.

x <- "Not all those\nwho wonder are lost."
writeLines(x)

Not all those
who wonder are lost.

• "\t" represents a tab.

x <- "Not all those\twho wonder are lost."
writeLines(x)

Not all those who wonder are lost.

• You can add any Unicode character with a \u followed by the hexadecimal unicode representation of
that character.

mu <- "\u00b5"
writeLines(mu)

µ

stringr Intro

• The stringr package contains a lot of convenience functions for manipulating strings (and they are a
lot more user friendly than base R’s string manipulation functions like grep() and gsub()).

• stingr is part of the tidyverse so you do not have to load it separately.

library(tidyverse)

• All of stringr’s functions begin with “str_”, so you can press tab after typing “str_” and a list of
possible string manipulation functions will pop up (in RStudio).

• For example, to get the number of characters in a string, use str_length().

str_length("Upon the hearth the fire is red,")

[1] 32

Combining Strings

• Combine strings with str_c().

2

https://en.wikipedia.org/wiki/List_of_Unicode_characters

x <- "Faithless is he that says"
y <- "farewell when the road darkens."
str_c(x, y)

[1] "Faithless is he that saysfarewell when the road darkens."

• The default is to separate strings by nothing, but you can use sep to change the separator.

str_c(x, y, sep = " ")

[1] "Faithless is he that says farewell when the road darkens."

• Just like c(), str_c() can take multiple arguments.

str_c("Short", "cuts", "make", "long", "delays.", sep = " ")

[1] "Short cuts make long delays."

• If you provide str_c() a vector of arguments, it will vectorize the combining unless you provide a
collapse argument.

x <- c("Short", "cuts", "make", "long", "delays.")
str_c(x, "LOTR", sep = " ")

[1] "Short LOTR" "cuts LOTR" "make LOTR" "long LOTR"
[5] "delays. LOTR"

str_c(x, collapse = " ")

[1] "Short cuts make long delays."

• Combining with NA results in NA:

str_c("Faithless is he that says", NA)

[1] NA

• Exercise: In the flights data frame from the nycflights13 package, use string concatenation to create
a new variable called date which is of the form "DD-MM-YYYY".

Extracting substrings

• str_sub() extracts a substring between the location of two characters.

x <- "The Road goes ever on and on"
str_sub(x, start = 2, end = 6)

[1] "he Ro"

• Replace substrings with assignment

3

str_sub(x, start = 2, end = 6) <- " Tolkein "
x

[1] "T Tolkein ad goes ever on and on"

• Exercise: Reproduce this quote

But under a tall tree I will lie, And let the clouds go sailing by.

with these strings

w <- "But under a tall tree"
x <- "FRELL I will lie"
y <- "and let clouds go"
z <- "sailing by."

• You can index from the end of the string using negative indices:

x <- "The Road goes ever on and on"
str_sub(x, -9, -1)

[1] "on and on"

Regular Expressions

• Regular expressions (regex or regexp) is a syntax for pattern matching in strings.

• We’ll use str_replace() and str_replace_all() to demonstrate using regex in stringr. These func-
tions search for a pattern and then replace it with another string.

• But wherever there is a pattern argument in a stringr function, you can use regex (to extract strings,
get a logical if there is a match, etc. . .).

• Basic usage: finds exact match of string.

x <- "Ho! Ho! Ho! to the bottle I go to heal my heart and drown my woe."
str_replace_all(x, "hea", "XX")

[1] "Ho! Ho! Ho! to the bottle I go to XXl my XXrt and drown my woe."

• A period “.” matches any character.

str_replace_all(x, "hea.", "XX")

[1] "Ho! Ho! Ho! to the bottle I go to XX my XXt and drown my woe."

• You can “escape” a period with two backslashes “\\” to match periods.

str_replace_all(x, ".", "X") ## Matches everything

[1] "XXX"

4

str_replace_all(x, "\\.", "X") ## Matches the only period

[1] "Ho! Ho! Ho! to the bottle I go to heal my heart and drown my woeX"

• To match a backslash, you need four backslashes (to escape the escape).

y <- "Rain\\may\\fall\\and\\wind\\may\\blow"
writeLines(y)

Rain\may\fall\and\wind\may\blow

str_replace_all(y, "\\\\", "XX")

[1] "RainXXmayXXfallXXandXXwindXXmayXXblow"

• Important note: The actual regular expressions above are strings themselves, and so you view them
with writeLines(). So using “\\.” as the pattern argument in R results in the regular expression
“\.”.

• Exercise: Construct a regular expression to match this string:

\.\.\.

• Exercise: Use one function call to replace "back" and "lack" with "foo".

x <- "but better is Beer if drink we lack, and Water Hot poured down the back."

Anchoring

• You can anchor the pattern to only match the start or end of a string.

– ˆ matches only the start of a string.
– $ matches only the end of a string.

x <- c("But", "under", "a", "tall", "tree", "I", "will", "lie")
str_replace(x, "^t", "XX")

[1] "But" "under" "a" "XXall" "XXree" "I" "will" "lie"

str_replace(x, "t$", "XX")

[1] "BuXX" "under" "a" "tall" "tree" "I" "will" "lie"

• Use both to match only a complete string.

x <- c("apple pie", "apple", "apple cake")
str_replace_all(x, "apple", "XX")

[1] "XX pie" "XX" "XX cake"

5

str_replace_all(x, "^apple$", "XX")

[1] "apple pie" "XX" "apple cake"

• Exercise: Use str_replace() to replace all four letter words beginning with an "a" with "foo" in
the following list

x <- c("apple", "barn", "ape", "cart", "alas", "pain", "ally")

Special Characters

• We’ll use this character vector for practice:

x <- c("Abba: 555-1234", "Anna: 555-0987", "Andy: 555-7654")

• \\d: matches any digit.

str_replace(x, "\\d\\d\\d-\\d\\d\\d\\d", "XXX-XXXX")

[1] "Abba: XXX-XXXX" "Anna: XXX-XXXX" "Andy: XXX-XXXX"

• \\s: matches any white space (e.g. space, tab, newline).

str_replace(x, "\\s", "X")

[1] "Abba:X555-1234" "Anna:X555-0987" "Andy:X555-7654"

• [abc]: matches a, b, or c.

str_replace(x, "A[bn][bn]a", "XXXX")

[1] "XXXX: 555-1234" "XXXX: 555-0987" "Andy: 555-7654"

• [ˆabc]: matches anything except a, b, or c.

str_replace(x, "A[^b]", "XXXX")

[1] "Abba: 555-1234" "XXXXna: 555-0987" "XXXXdy: 555-7654"

• abc|xyz: matches either abc or xyz. This is called alternation

• You can use parentheses to control where the alternation occurs.

– a(bc|xy)z matches either abcz or axyz.

str_replace(x, "An(na|dy)", "XXXX")

[1] "Abba: 555-1234" "XXXX: 555-0987" "XXXX: 555-7654"

• To ignore case, place a (?i) before the regex.

6

str_replace("AB", "ab", "X")

[1] "AB"

str_replace("AB", "(?i)ab", "X")

[1] "X"

• Exercise: Create separate regular expressions to find all words that:

1. Start with a vowel. Test on

x1 <- c("abba", "cat", "eal", "ion", "oops", "Uganda", "Anna", "dog")

2. That end in consonants. (Hint: thinking about matching “not”-vowels.) test on

x2 <- c("bob", "Anna", "dog")

3. End with ed, but not with eed. Test on

x3 <- c("tired", "need", "bad", "rod")

4. End with ing or ise. Test on

x4 <- c("paradise", "firing", "jaded", "kin")

Repetition

• Can match a pattern multiple times in a row:

– ?: 0 or 1
– +: 1 or more
– *: 0 or more

x <- c("A", "AA", "AAA", "AAAA", "B", "BB")
str_replace_all(x, "^A?", "X")

[1] "X" "XA" "XAA" "XAAA" "XB" "XBB"

str_replace_all(x, "^A+", "X")

[1] "X" "X" "X" "X" "B" "BB"

str_replace_all(x, "^A*", "X")

[1] "X" "X" "X" "X" "XB" "XBB"

• A more realistic example:

7

str_replace_all("color and colour", "colou?r", "X")

[1] "X and X"

• Control exactly how many repetitions allowed in a match:

– {n}: exactly n.
– {n,}: n or more.
– {0,m}: at most m.
– {n,m}: between n and m.

str_replace_all(x, "A{2}", "X")

[1] "A" "X" "XA" "XX" "B" "BB"

str_replace_all(x, "A{2,}", "X")

[1] "A" "X" "X" "X" "B" "BB"

str_replace_all(x, "A{0,2}", "X")

[1] "XX" "XX" "XXX" "XXX" "XBX" "XBXBX"

str_replace_all(x, "A{3,4}", "X")

[1] "A" "AA" "X" "X" "B" "BB"

• Regex will automatically match the longest string possible.

str_replace("AAAA", "A*", "X")

[1] "X"

• Exercise: Create regular expressions to find all words that:

1. Start with three consonants. Test on

x1 <- c("string", "priority", "value", "distinction")

2. Have three or more vowels in a row. Test on

x2 <- c("honorific", "delicious", "priority", "queueing")

3. Have two or more vowel-consonant pairs in a row. Test on

x3 <- c("honorific", "sam", "prior")

Grouping and Backreferences

• Parentheses create a numbered group that you can then back reference with \\1 for the match in the
first parentheses, \\2 in the second parentheses, etc. . .

8

str_replace("cococola", "(..)\\1", "pepsi")

[1] "pepsicola"

str_replace("banana", "([aeiou][^aeiou])\\1", "XX")

[1] "bXXa"

stringr tools

• There are a lot of tools, so we’ll go over them briefly and do an exercise where you can use them in
more detail.

• str_to_lower() and str_to_upper() convert all letters to lower or capital case.

x <- "Deeds will not be less valiant because they are unpraised."
str_to_lower(x)

[1] "deeds will not be less valiant because they are unpraised."

str_to_upper(x)

[1] "DEEDS WILL NOT BE LESS VALIANT BECAUSE THEY ARE UNPRAISED."

• str_detect(): Returns TRUE if a regex pattern matches a string and FALSE if it does not. Very useful
for filters.

Get all John's and Joe's from the Lahman dataset
library(Lahman)
data("Master")
Master %>%

filter(str_detect(nameFirst, "^Jo(e|hn)$")) %>%
select(nameFirst) %>%
head()

nameFirst
1 John
2 Joe
3 Joe
4 Joe
5 Joe
6 John

• str_subset(): Returns the words where there is a match. Not often as useful as str_detect()
because you don’t use it in data frames that often.

str_subset(Master$nameFirst, "^Jo(e|hn)$") %>%
head()

[1] "John" "Joe" "Joe" "Joe" "Joe" "John"

• str_count(): Counts the occurrence of a match within a string.

9

str_count(c("banana", "coco"), "[^aeiou][aeiou]")

[1] 3 2

They count non-overlapping matches

str_count("abababa", "aba")

[1] 2

• str_extract(): Returns the pattern that it finds. str_extract() will only return the first match
but str_extract_all() will return all matches.

colorstr <- str_c("red", "blue", "yellow", "orange", "brown", sep = "|")
colorstr

[1] "red|blue|yellow|orange|brown"

str_extract("I like blue and brown and that's it", colorstr)

[1] "blue"

str_extract_all("I like blue and brown and that's it", colorstr)

[[1]]
[1] "blue" "brown"

• str_match(): returns a matrix where each column is a grouped component.

x <- "I like blue and brown and that's it, or black"
str_extract_all(x, "(and|or)\\s([^\\s]+)")

[[1]]
[1] "and brown" "and that's" "or black"

str_match_all(x, "(and|or)\\s([^\\s]+)")

[[1]]
[,1] [,2] [,3]
[1,] "and brown" "and" "brown"
[2,] "and that's" "and" "that's"
[3,] "or black" "or" "black"

• Let’s look at the poem “Farewell We Call to Hearth and Hall!”

farewell <- c("Farewell we call to hearth and hall!
Though wind may blow and rain may fall,
We must away ere break of day
Far over wood and mountain tall.")

writeLines(farewell)

10

Farewell we call to hearth and hall!
Though wind may blow and rain may fall,
We must away ere break of day
Far over wood and mountain tall.

• str_split() will split up a string based on a character we choose.

Split based on spaces
str_split(farewell, pattern = "\\s+", simplify = TRUE) ## use one or more space to split

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] "Farewell" "we" "call" "to" "hearth" "and" "hall!" "Though" "wind"
[,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19]
[1,] "may" "blow" "and" "rain" "may" "fall," "We" "must" "away" "ere"
[,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28]
[1,] "break" "of" "day" "Far" "over" "wood" "and" "mountain" "tall."

• str_replace() and str_replace_all() will replace patterns with provided strings. So say we want
to get rid of all punctuation.

str_split(farewell, pattern = "\\s+", simplify = TRUE) %>%
str_replace_all("\\.|\\!|,", "")

[1] "Farewell" "we" "call" "to" "hearth" "and"
[7] "hall" "Though" "wind" "may" "blow" "and"
[13] "rain" "may" "fall" "We" "must" "away"
[19] "ere" "break" "of" "day" "Far" "over"
[25] "wood" "and" "mountain" "tall"

• You can use back references to populate the replacement.

str_replace_all("It is 1am", "(\\d+)(am|pm)", "\\2")

[1] "It is am"

• More stringr options can be found in RDS.

11

https://r4ds.had.co.nz/

	Learning Objectives
	Strings
	stringr Intro
	Combining Strings
	Extracting substrings

	Regular Expressions
	Anchoring
	Special Characters
	Repetition
	Grouping and Backreferences

	stringr tools

