
Factors
David Gerard
2019-04-15

Learning Objectives

• Manipulating factors.
• Chapter 15 of RDS.
• Wrangling Categorical Data in R.
• 8.2: Chimeras of the R Inferno
• Factors with forcats Cheat Sheet.
• Forcats Overview.

Factors

• A “factor” is R’s way to say that a variable is categorical (puts observational/experimental units into
different groups or categories based on their values.).

• A factor is different from a character in that:

1. There is a small predefined set of “levels” (possible values) of a factor, but not of a character.
2. There is an ordering for the levels of a factor

– Useful when determining the order to plot something.
– Useful when doing ordered logistic regression.

• Consider the following data frame for average highs in DC for each month.

library(tidyverse)
dcclimate <- tribble(~month, ~avehigh,

##----/---------
"Jan", 43.4,
"Feb", 47.1,
"Mar", 55.9,
"Apr", 66.6,
"May", 75.4,
"Jul", 88.4,
"Aux", 86.5,
"Sep", 79.5,
"Oct", 68.4,
"Nov", 57.9,
"Dec", 46.8)

• The weather for June is missing and the 3-letter abbreviation for August is incorrect. We would like
to notice both of these.

• Also, when we plot the data, we would prefer the order to be the same as that for the order of the
months of the year.

1

https://r4ds.had.co.nz/
https://doi.org/10.7287/peerj.preprints.3163v2
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://github.com/rstudio/cheatsheets/blob/master/factors.pdf
https://forcats.tidyverse.org/

ggplot(dcclimate, aes(x = month, y = avehigh)) +
geom_col()

0

25

50

75

Apr Aux Dec Feb Jan Jul Mar May Nov Oct Sep

month

av
eh

ig
h

• Factors help us with all of these issues.

• You have to be very careful about factors.

x <- c("51", "32", "15", "2", "32")
xf <- factor(x)
as.numeric(x)

[1] 51 32 15 2 32

as.numeric(xf)

[1] 4 3 1 2 3

as.numeric("Hello")

Warning: NAs introduced by coercion

[1] NA

as.numeric(factor("Hello"))

[1] 1

fac1 <- factor(c("x1", "x2", "x3"))
fac2 <- factor(c("y1", "y2", "y3"))
c(fac1, fac2)

[1] 1 2 3 1 2 3

2

• If you are 100% sure that all levels are numerics and are incorrectly specified as factors, then do the
following to convert to numeric:

parse_number(levels(xf)[xf])

[1] 51 32 15 2 32

Creating Factors

• Use factor() or parse_factor() to create a factor variable

• parse_factor() returns better warnings, so I would recommend always using that.

monthvec <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec")

dcclimate %>%
mutate(monthfc = factor(month, levels = monthvec)) ->
dcclimate

dcclimate %>%
mutate(monthfc2 = parse_factor(month, levels = monthvec)) ->
dcclimate

Warning: 1 parsing failure.
row col expected actual
7 -- value in level set Aux

dcclimate$monthfc

[1] Jan Feb Mar Apr May Jul <NA> Sep Oct Nov Dec
Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

• If you do not specify the levels argument, R will assume that the levels are the unique values of the
vector.

– factor() takes the order of the levels to be the same order returned by sort().
– parse_factor() takes the order of the levels to be the same order as the order of the value

introduced.

x <- c("A", "string", "vector", "is", "a", "string", "vector")
factor(x)

[1] A string vector is a string vector
Levels: a A is string vector

sort(unique(x))

[1] "a" "A" "is" "string" "vector"

3

parse_factor(x)

[1] A string vector is a string vector
Levels: A string vector is a

• You can always see the levels of a factor (and their order) using the levels() function

levels(dcclimate$monthfc)

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov"
[12] "Dec"

• Other options are the fct_unique() and fct_count() functions from the forcats package.

fct_unique(dcclimate$monthfc)

[1] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

fct_count(dcclimate$monthfc)

A tibble: 13 x 2
f n
<fct> <int>
1 Jan 1
2 Feb 1
3 Mar 1
4 Apr 1
5 May 1
6 Jun 0
7 Jul 1
8 Aug 0
9 Sep 1
10 Oct 1
11 Nov 1
12 Dec 1
13 <NA> 1

• You can count the number of levels with nlevels().

nlevels(dcclimate$monthfc)

[1] 12

• Once we have a factor variable, the order of the aesthetic map is set in ggplot.

ggplot(dcclimate, aes(x = monthfc, y = avehigh)) +
geom_col()

4

0

25

50

75

Jan Feb Mar Apr May Jul Sep Oct Nov Dec NA

monthfc

av
eh

ig
h

• We can include missing levels by using the drop = FALSE argument in the appropriate scale call:

ggplot(dcclimate, aes(x = monthfc, y = avehigh)) +
geom_col() +
scale_x_discrete(drop = FALSE)

0

25

50

75

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec NA

monthfc

av
eh

ig
h

forcats

• forcats is an R package which makes two things much easier in R:

– Changing the order of the levels of the factor variable.
– Changing the levels of the factor variable.

• It also a few other helper functions for factors.

5

• All forcat functions begin with fct_. So you can type “fct_” then use tab-completion to scroll through
the possible functions.

• forcats is a part of the tidyverse, so you don’t need to load it separately when you load the tidyverse.

Changing the Order of the Levels

• Consider the subset of the General Social Survey stored in the gss_cat data in forcats.

data(gss_cat)
glimpse(gss_cat)

Observations: 21,483
Variables: 9
$ year <int> 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, ...
$ marital <fct> Never married, Divorced, Widowed, Never married, Divor...
$ age <int> 26, 48, 67, 39, 25, 25, 36, 44, 44, 47, 53, 52, 52, 51...
$ race <fct> White, White, White, White, White, White, White, White...
$ rincome <fct> $8000 to 9999, $8000 to 9999, Not applicable, Not appl...
$ partyid <fct> "Ind,near rep", "Not str republican", "Independent", "...
$ relig <fct> Protestant, Protestant, Protestant, Orthodox-christian...
$ denom <fct> Southern baptist, Baptist-dk which, No denomination, N...
$ tvhours <int> 12, NA, 2, 4, 1, NA, 3, NA, 0, 3, 2, NA, 1, NA, 1, 7, ...

• You often want to change the order of the levels of a factor to make plots more insightful.

gss_cat %>%
group_by(relig) %>%
summarize(tvhours_mean = mean(tvhours, na.rm = TRUE)) ->
tvdat

ggplot(tvdat, aes(x = tvhours_mean, y = relig)) +
geom_point() +
xlab("Average TV Hours") +
ylab("Religion")

No answer
Don't know

Inter−nondenominational
Native american

Christian
Orthodox−christian

Moslem/islam
Other eastern

Hinduism
Buddhism

Other
None

Jewish
Catholic

Protestant

2 3 4

Average TV Hours

R
el

ig
io

n

6

https://en.wikipedia.org/wiki/General_Social_Survey

• fct_reorder() reorders the levels of a factor according to some values of another variable. The
arguments are:

– f: The factor vector.
– x: A numeric vector used to reorder the levels.
– fun: A function applied to x, the result of which will be used to order the levels of f.

levels(tvdat$relig)

[1] "No answer" "Don't know"
[3] "Inter-nondenominational" "Native american"
[5] "Christian" "Orthodox-christian"
[7] "Moslem/islam" "Other eastern"
[9] "Hinduism" "Buddhism"
[11] "Other" "None"
[13] "Jewish" "Catholic"
[15] "Protestant" "Not applicable"

tvdat %>%
mutate(relig = fct_reorder(relig, tvhours_mean)) ->
tvdat

levels(tvdat$relig)

[1] "Other eastern" "Hinduism"
[3] "Buddhism" "Orthodox-christian"
[5] "Moslem/islam" "Jewish"
[7] "None" "No answer"
[9] "Other" "Christian"
[11] "Inter-nondenominational" "Catholic"
[13] "Protestant" "Native american"
[15] "Don't know" "Not applicable"

• The plot now reorders the y-axis according to the new level order.

ggplot(tvdat, aes(x = tvhours_mean, y = relig)) +
geom_point() +
xlab("Average TV Hours") +
ylab("Religion")

7

Other eastern
Hinduism

Buddhism
Orthodox−christian

Moslem/islam
Jewish

None
No answer

Other
Christian

Inter−nondenominational
Catholic

Protestant
Native american

Don't know

2 3 4

Average TV Hours

R
el

ig
io

n

• fct_rev() reverses the order of the factors.

tvdat %>%
mutate(relig = fct_rev(relig)) %>%
ggplot(aes(x = tvhours_mean, y = relig)) +

geom_point() +
xlab("Average TV Hours") +
ylab("Religion")

Don't know
Native american

Protestant
Catholic

Inter−nondenominational
Christian

Other
No answer

None
Jewish

Moslem/islam
Orthodox−christian

Buddhism
Hinduism

Other eastern

2 3 4

Average TV Hours

R
el

ig
io

n

• fct_relevel() allows you to move existing levels to any location.

Moves "None" to first level
fct_relevel(tvdat$relig, "None") %>%

levels()

8

[1] "None" "Other eastern"
[3] "Hinduism" "Buddhism"
[5] "Orthodox-christian" "Moslem/islam"
[7] "Jewish" "No answer"
[9] "Other" "Christian"
[11] "Inter-nondenominational" "Catholic"
[13] "Protestant" "Native american"
[15] "Don't know" "Not applicable"

Moves "None" to the third level
fct_relevel(tvdat$relig, "None", after = 2L) %>%

levels()

[1] "Other eastern" "Hinduism"
[3] "None" "Buddhism"
[5] "Orthodox-christian" "Moslem/islam"
[7] "Jewish" "No answer"
[9] "Other" "Christian"
[11] "Inter-nondenominational" "Catholic"
[13] "Protestant" "Native american"
[15] "Don't know" "Not applicable"

Moves "None" to the last level
fct_relevel(tvdat$relig, "None", after = nlevels(tvdat$relig)) %>%

levels()

[1] "Other eastern" "Hinduism"
[3] "Buddhism" "Orthodox-christian"
[5] "Moslem/islam" "Jewish"
[7] "No answer" "Other"
[9] "Christian" "Inter-nondenominational"
[11] "Catholic" "Protestant"
[13] "Native american" "Don't know"
[15] "Not applicable" "None"

Returns a warning because "Cthulhuism" is not a level
fct_relevel(tvdat$relig, "Cthulhuism")

Warning: Unknown levels in `f`: Cthulhuism

[1] No answer Don't know
[3] Inter-nondenominational Native american
[5] Christian Orthodox-christian
[7] Moslem/islam Other eastern
[9] Hinduism Buddhism
[11] Other None
[13] Jewish Catholic
[15] Protestant
16 Levels: Other eastern Hinduism Buddhism ... Not applicable

• Exercise: Reorder the levels of the partyid variable so that the levels are in alphabetical order.

• Exercise: Move the "Not applicable" level to the front in the rincome variable.

9

Modify Factor Levels

• Let’s look at the levels of partyid in gss_cat.

levels(gss_cat$partyid)

[1] "No answer" "Don't know" "Other party"
[4] "Strong republican" "Not str republican" "Ind,near rep"
[7] "Independent" "Ind,near dem" "Not str democrat"
[10] "Strong democrat"

• Use fct_recode() to change the levels.

gss_cat %>%
mutate(partyid = fct_recode(partyid,

"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat"
)) ->

gss_cat
levels(gss_cat$partyid)

[1] "No answer" "Don't know"
[3] "Other party" "Republican, strong"
[5] "Republican, weak" "Independent, near rep"
[7] "Independent" "Independent, near dem"
[9] "Democrat, weak" "Democrat, strong"

• New level goes on the left of the equals sign. Old level goes on the right. (Just like mutate()!)

• Exercise: Modify the factor levels of marital to be abbreviations of their long-names. For example,
“Divorced” can just be “D”

Other Useful Functions.

• fct_c(): is the safe way to combine factor vectors.

fc1 <- parse_factor(c("A", "B"))
fc1

[1] A B
Levels: A B

fc2 <- parse_factor(c("C", "D"))
fc2

[1] C D
Levels: C D

10

fct_c(fc1, fc2)

[1] A B C D
Levels: A B C D

• fct_collapse(): combine multiple levels into one level.

fc <- parse_factor(c("A", "B", "C", "A", "B", "C"))
fc

[1] A B C A B C
Levels: A B C

fct_collapse(fc, "blah" = c("A", "B"))

[1] blah blah C blah blah C
Levels: blah C

• fct_drop(): removes any levels that are unused.

fc <- parse_factor(c("A", "B"), levels = c("A", "B", "C"))
fc

[1] A B
Levels: A B C

fct_drop(fc)

[1] A B
Levels: A B

• fct_expand(): adds a new level.

fc <- parse_factor(c("A", "B"))
fc

[1] A B
Levels: A B

fct_expand(fc, "C")

[1] A B
Levels: A B C

• fct_infreq(): Order by frequency of a level.

fc <- parse_factor(c("A", "B", "C", "B", "C", "C"))
fct_count(fc)

11

A tibble: 3 x 2
f n
<fct> <int>
1 A 1
2 B 2
3 C 3

fct_infreq(fc) %>%
fct_count()

A tibble: 3 x 2
f n
<fct> <int>
1 C 3
2 B 2
3 A 1

12

	Learning Objectives
	Factors
	Creating Factors
	forcats
	Changing the Order of the Levels
	Modify Factor Levels
	Other Useful Functions.

