
Dates
David Gerard
2019-04-02

Learning Objectives

• Manipulating dates and times.
• Chapter 16 of RDS.
• Dates and Times Cheat Sheet.
• Lubridate Overview.

Parsing Dates

• The lubridate package has a bunch of convenience functions for working with dates. It is not a part of
the tidyverse, so you need to load it separately.

library(tidyverse)
library(lubridate)

• There are three main classes for date/time data:

– Date for just the date.
– POSIXct for both the date and the time. “POSIXct” stands for “Portable Operating System

Interface Calendar Time” (don’t ask me where the “X” comes from). It is a part of a standardized
system of representing time across many computing computing platforms.

– hms from the hms R package for just the time. “hms” stands for “hours, minutes, and seconds.”

• today() will give you the current date in the Date class.

today()

[1] "2019-04-02"

class(today())

[1] "Date"

• now() will give you the current date-time in the POSIXct class.

now()

[1] "2019-04-02 09:10:43 EDT"

class(now())

[1] "POSIXct" "POSIXt"

• There is no built-in R function to find the current time without the date. But you can use
hms::as.hms(now()) to get the current time.

1

https://r4ds.had.co.nz/
https://github.com/rstudio/cheatsheets/blob/master/lubridate.pdf
https://lubridate.tidyverse.org/
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

hms::as.hms(now())

09:10:43.7751

class(hms::as.hms(now()))

[1] "hms" "difftime"

Parsing Dates

• You can use parse_date(), parse_datetime(), and parse_time() to parse a date/date-time/time
from a string.

x <- parse_date("10/11/2020", format = "%m/%d/%Y")
x

[1] "2020-10-11"

class(x)

[1] "Date"

y <- parse_datetime("10/11/2020 11:59:20", format = "%m/%d/%Y %H:%M:%S")
y

[1] "2020-10-11 11:59:20 UTC"

class(y)

[1] "POSIXct" "POSIXt"

z <- parse_time("11:59:20", "%H:%M:%S")
z

11:59:20

class(z)

[1] "hms" "difftime"

• lubridate comes with a bunch of helper functions to parse dates more automatically. The helper
function name itself specifies the order of the year, month, day, hours, minutes, and seconds.

• To parse dates, look at the help page of

help(ymd)

2

https://dcgerard.github.io/stat_412_612/lectures/06_tidyr/06_parsers.pdf

Only the order of year, month, and day matters
ymd(c("2011/01-10", "2011-01/10", "20110110"))

[1] "2011-01-10" "2011-01-10" "2011-01-10"

mdy(c("01/10/2011", "01 adsl; 10 df 2011", "January 10, 2011"))

[1] "2011-01-10" "2011-01-10" "2011-01-10"

• To parse times, look at the help page of

help(ms)

only the order of hours, minutes, and seconds matter
hms(c("10:40:10", "10 40 10"))

[1] "10H 40M 10S" "10H 40M 10S"

• Note that ms(), hm(), and hms() won’t recognize “-” as a separator because it treats it as negative
time. So use parse_time() here.

ms("10-10")

[1] "10M -10S"

• To parse date-times, look at the help page of

help(ymd_hms)

• Exercise: Parse the following date-times.

"05/26/2004 UTC 11:11:11.444"
"26 2004 05 UTC 11/11/11.444"

• Exercise (RDS 16.2.4.3): Use the appropriate lubridate function to parse each of the following dates:

d1 <- "January 1, 2010"
d2 <- "2015-Mar-07"
d3 <- "06-Jun-2017"
d4 <- c("August 19 (2015)", "July 1 (2015)")
d5 <- "12/30/14" # Dec 30, 2014

Dates from individual components

• If you have a vector of years, months, days, hours, minutes, or seconds, you can use make_date() or
make_datetime() to create dates and date-times.

3

make_date(year = 1981, month = 6, day = 25)

[1] "1981-06-25"

make_datetime(year = 1972, month = 2, day = 22, hour = 10, min = 9, sec = 01)

[1] "1972-02-22 10:09:01 UTC"

• nycflights13 example:

library(nycflights13)
data("flights")
flights %>%

mutate(datetime = make_datetime(year = year,
month = month,
day = day,
hour = hour,
min = minute)) ->

flights
select(flights, datetime)

A tibble: 336,776 x 1
datetime
<dttm>
1 2013-01-01 05:15:00
2 2013-01-01 05:29:00
3 2013-01-01 05:40:00
4 2013-01-01 05:45:00
5 2013-01-01 06:00:00
6 2013-01-01 05:58:00
7 2013-01-01 06:00:00
8 2013-01-01 06:00:00
9 2013-01-01 06:00:00
10 2013-01-01 06:00:00
... with 336,766 more rows

• Having it in the date-time format makes it easier to plot.

ggplot(flights, aes(x = datetime)) +
geom_freqpoly(bins = 365)

4

0

250

500

750

1000

Jan 2013 Apr 2013 Jul 2013 Oct 2013 Jan 2014

datetime

co
un

t

• It makes it easier to filter by date

flights %>%
filter(as_date(datetime) == ymd(20130704)) %>%
ggplot(aes(x = datetime)) +
geom_freqpoly(binwidth = 600)

0

5

10

15

20

Jul 04 06:00 Jul 04 12:00 Jul 04 18:00 Jul 05 00:00

datetime

co
un

t

• I used as_date() in the previous example. This function will try to coerce an object to a date.
Sometimes successfully! It is particularly useful for extracting the date component of a POSIXct
object.

• as_datetime() tries to coerce an object to a POSIXct object.

Extracting Components

• year() extracts the year.

5

• month() extracts the month.

• week() extracts the week.

• mday() extracts the day of the month (1, 2, 3, . . .).

• wday() extracts the day of the week (Saturday, Sunday, Monday . . .).

• yday() extracts the day of the year (1, 2, 3, . . .)

• hour() extracts the hour.

• minute() extract the minute.

• second() extracts the second.

ddat <- mdy_hms("01/02/1970 03:51:44")
ddat

[1] "1970-01-02 03:51:44 UTC"

year(ddat)

[1] 1970

month(ddat, label = TRUE)

[1] Jan
12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < ... < Dec

week(ddat)

[1] 1

mday(ddat)

[1] 2

wday(ddat, label = TRUE)

[1] Fri
Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

yday(ddat)

[1] 2

hour(ddat)

[1] 3

6

minute(ddat)

[1] 51

second(ddat)

[1] 44

• Exercise: Load the wmata_ridership data frame into R from https://dcgerard.github.io/stat_412_
612/data/wmata_ridership.csv. For each month, calculate the proportion of rides made on a given
day of the month. Then make box plots of the proportions of ridership vs day of the weak. But exclude
any days from 2004.

• You can overwrite components.

ddat <- mdy_hms("01/02/1970 03:51:44")
ddat

[1] "1970-01-02 03:51:44 UTC"

year(ddat) <- 1988
ddat

[1] "1988-01-02 03:51:44 UTC"

• You can round components

ddat <- mdy_hms("01/02/1970 03:51:44")
ddat

[1] "1970-01-02 03:51:44 UTC"

round_date(ddat, unit = "year")

[1] "1970-01-01 UTC"

Time Spans

• To count the number of seconds between two dates, use a duration. You can read about durations
using

help("Duration-class")

• We can find out how old Patrick Stewart is using durations

d1 <- ymd(19400713)
d2 <- today()
agesec <- as.duration(d2 - d1)
agesec

[1] "2484172800s (~78.72 years)"

• You can create durations from years with dyears(), from days with ddays(), etc. . .

7

https://dcgerard.github.io/stat_412_612/data/wmata_ridership.csv
https://dcgerard.github.io/stat_412_612/data/wmata_ridership.csv
https://en.wikipedia.org/wiki/Patrick_Stewart

dyears(1)

[1] "31536000s (~52.14 weeks)"

ddays(1)

[1] "86400s (~1 days)"

dhours(1)

[1] "3600s (~1 hours)"

dminutes(1)

[1] "60s (~1 minutes)"

dseconds(1)

[1] "1s"

• You can add durations to date-times, but you always add seconds, so if there is daylight savings you
get weird results (add a day but the time is not the same as the time the previous day).

one_pm <- ymd_hms("2016-03-12 13:00:00", tz = "America/New_York")
one_pm

[1] "2016-03-12 13:00:00 EST"

one_pm + ddays(1)

[1] "2016-03-13 14:00:00 EDT"

• Adding a period takes into account daylight savings.

one_pm

[1] "2016-03-12 13:00:00 EST"

one_pm + days(1)

[1] "2016-03-13 13:00:00 EDT"

• You can read more about periods with

help("Period-class")

• Intervals are like durations, but they also have an associated start time. You can read more about
intervals with

8

help("Interval-class")

• Exercise: How long of a time-span is covered in the WMATA ridership dataset?

Time Zones

• Time zones are specified using the tz or tzone arguments (for example, in the call to ymd_hms()
above).

• Time zones are specified by “content/city.” For example, "America/New_York" and "Europe_Paris"

• You can see a complete list of time zones with OlsonNames().

• The default time zone is UTC (which has no daylight savings).

• You usually don’t have to worry about timezones unless you loaded them in incorrectly. For example,
R might think it’s UTC even though it should be America/New_York and then forget daylight savings.

• If a date-time is labelled with the incorrect time zone, use force_tz().

d1 <- ymd_hms("20140101 10:01:11")
d1

[1] "2014-01-01 10:01:11 UTC"

force_tz(d1, tzone = "America/New_York")

[1] "2014-01-01 10:01:11 EST"

• If the timezone is correct, but you want to change it, use with_tz().

with_tz(d1, tzone = "America/New_York")

[1] "2014-01-01 05:01:11 EST"

9

	Learning Objectives
	Parsing Dates
	Parsing Dates
	Dates from individual components
	Extracting Components
	Time Spans
	Time Zones

