Dates
David Gerard
2019-04-02

Learning Objectives

Manipulating dates and times.
Chapter 16 of RDS.
Dates and Times Cheat Sheet.
Lubridate Overview.

Parsing Dates

e The lubridate package has a bunch of convenience functions for working with dates. It is not a part of

the tidyverse, so you need to load it separately.

library(tidyverse)
library(lubridate)

There are three main classes for date/time data:

— Date for just the date.

— P0SIXct for both the date and the time. “POSIXct” stands for “Portable Operating System
Interface Calendar Time” (don’t ask me where the “X” comes from). It is a part of a standardized

system of representing time across many computing computing platforms.

— hms from the hms R package for just the time. “hms” stands for “hours, minutes, and seconds.”

today () will give you the current date in the Date class.
today ()

[1] "2019-04-02"

class(today())

[1] "Date"

now () will give you the current date-time in the POSIXct class.

now ()
[1] "2019-04-02 09:10:43 EDT"
class(now())

[1] "POSIXct" "POSIXt"

There is no built-in R function to find the current time without the date.

hms: :as.hms (now()) to get the current time.

But you can use

https://r4ds.had.co.nz/
https://github.com/rstudio/cheatsheets/blob/master/lubridate.pdf
https://lubridate.tidyverse.org/
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

hms: :as.hms (now())

09:10:43.7751

class(hms: :as.hms (now()))

[1] "hms" "difftime"

Parsing Dates

e You can use parse_date(), parse_datetime(), and parse_time() to parse a date/date-time/time
from a string.

x <- parse_date("10/11/2020", format = "Ym/%d/%Y")
X

[1] "2020-10-11"

class(x)

[1] "Date"

y <- parse_datetime("10/11/2020 11:59:20", format = "Ym/%d/%Y %H:%M:%S")
y

[1] "2020-10-11 11:59:20 UTC"

class(y)

[1] "POSIXct" "POSIXt"

z <- parse_time("11:59:20", "%H:%M:%S")
z

11:59:20

class(z)

[1] "hms" "difftime"

e lubridate comes with a bunch of helper functions to parse dates more automatically. The helper
function name itself specifies the order of the year, month, day, hours, minutes, and seconds.

e To parse dates, look at the help page of

help(ymd)

https://dcgerard.github.io/stat_412_612/lectures/06_tidyr/06_parsers.pdf

Only the order of year, month, and day matters
ymd(c("2011/01-10", "2011-01/10", "20110110"))

[1] "2011-01-10" "2011-01-10" "2011-01-10"

mdy(c("01/10/2011", "01 adsl; 10 d4df 2011", "January 10, 2011"))

[1] "2011-01-10" "2011-01-10" "2011-01-10"

e To parse times, look at the help page of

help(ms)

only the order of hours, minutes, and seconds matter
hms(c("10:40:10", "10 40 10"))

[1] "10H 40M 10S" "10H 40M 10S"

e Note that ms(), hm(), and hms () won’t recognize “-~” as a separator because it treats it as negative
time. So use parse_time() here.

ms("10-10")

[1] "10M -108"

e To parse date-times, look at the help page of

help(ymd_hms)

o Exercise: Parse the following date-times.

"05/26/2004 UTC 11:11:11.444"
"26 2004 05 UTC 11/11/11.444"

o Exercise (RDS 16.2.4.3): Use the appropriate lubridate function to parse each of the following dates:

dl <- "January 1, 2010"

d2 <- "2015-Mar-07"

d3 <- "06-Jun-2017"

d4 <- c("August 19 (2015)", "July 1 (2015)")
d5 <- "12/30/14" # Dec 30, 2014

Dates from individual components

e If you have a vector of years, months, days, hours, minutes, or seconds, you can use make_date() or
make_datetime () to create dates and date-times.

make_date(year = 1981, month = 6, day = 25)

[1] "1981-06-25"

make_datetime(year = 1972, month = 2, day = 22, hour = 10, min = 9, sec = 01)

[1] "1972-02-22 10:09:01 UTC"

nycflights13 example:

library(nycflights13)
data("flights")
flights %>%

mutate(datetime = make_datetime(year = year,
month = month,
day = day,
hour = hour,

min = minute)) ->
flights
select(flights, datetime)

A tibble: 336,776 x 1
datetime
<dttm>

1 2013-01-01 05:15:00
2 2013-01-01 05:29:00
3 2013-01-01 05:40:00
4 2013-01-01 05:45:00
5 2013-01-01 06:00:00
6 2013-01-01 05:58:00
7 2013-01-01 06:00:00
8 2013-01-01 06:00:00
9 2013-01-01 06:00:00

10 2013-01-01 06:00:00
... with 336,766 more rows

Having it in the date-time format makes it easier to plot.

ggplot(flights, aes(x = datetime)) +
geom_freqpoly(bins = 365)

1000 ~

750 -

500 -

count

250 -

0 -

Jan 2013 Apr 2013 Jul 2013 Oct 2013 Jan 2014
datetime

o It makes it easier to filter by date

flights %>%
filter(as_date(datetime) == ymd(20130704)) %>%
ggplot(aes(x = datetime)) +
geom_freqpoly(binwidth = 600)

201
154
1<
3
o 104
5 -
04 /_A
Jul 04 06:00 Jul 04 12:00 Jul 04 18:00 Jul 05 00:00
datetime

e I used as_date() in the previous example. This function will try to coerce an object to a date.

Sometimes successfully! It is particularly useful for extracting the date component of a POSIXct
object.

e as_datetime() tries to coerce an object to a POSIXct object.

Extracting Components

o year() extracts the year.

month () extracts the month.

week () extracts the week.

mday () extracts the day of the month (1, 2, 3, ...).

wday () extracts the day of the week (Saturday, Sunday, Monday ...).
yday () extracts the day of the year (1, 2, 3, ...)

hour () extracts the hour.

minute () extract the minute.

second () extracts the second.

ddat <- mdy_hms(”01/02/1970 03:51:44")
ddat

[1] "1970-01-02 03:51:44 UTC"

year (ddat)

[1] 1970

month(ddat, label = TRUE)

[1] Jan

12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < ...

week (ddat)

[1] 1

mday (ddat)

[1] 2

wday(ddat, label = TRUE)

[1] Fri
Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

yday(ddat)

[1] 2

hour (ddat)

[1]1 3

< Dec

minute(ddat)

[1] 51

second (ddat)

[1] 44

» Exercise: Load the wmata_ridership data frame into R from https://dcgerard.github.io/stat_ 412
612/data/wmata_ ridership.csv. For each month, calculate the proportion of rides made on a given
day of the month. Then make box plots of the proportions of ridership vs day of the weak. But exclude
any days from 2004.

e You can overwrite components.

ddat <- mdy_hms("01/02/1970 03:51:44")
ddat

[1] "1970-01-02 03:51:44 UTC"

year (ddat) <- 1988
ddat

[1] "1988-01-02 03:51:44 UTC"
e You can round components

ddat <- mdy_hms("01/02/1970 03:51:44")
ddat

[1] "1970-01-02 03:51:44 UTC"

round_date(ddat, unit = "year")

[1] "1970-01-01 UTC"

Time Spans

e To count the number of seconds between two dates, use a duration. You can read about durations
using

help("Duration-class")

e We can find out how old Patrick Stewart is using durations

dl <- ymd(19400713)

d2 <- today()

agesec <- as.duration(d2 - d1)
agesec

[1] "2484172800s (~78.72 years)"

¢ You can create durations from years with dyears(), from days with ddays(), etc...

https://dcgerard.github.io/stat_412_612/data/wmata_ridership.csv
https://dcgerard.github.io/stat_412_612/data/wmata_ridership.csv
https://en.wikipedia.org/wiki/Patrick_Stewart

dyears(1)

[1] "31536000s (~52.14 weeks)"
ddays (1)

[1] "86400s (~1 days)"

dhours (1)

[1] "3600s (~1 hours)"
dminutes (1)

[1] "60s (~1 minutes)"
dseconds (1)

[1] "1s"

You can add durations to date-times, but you always add seconds, so if there is daylight savings you
get weird results (add a day but the time is not the same as the time the previous day).

one_pm <- ymd_hms("2016-03-12 13:00:00", tz = "America/New_York")
one_pm

[1] "2016-03-12 13:00:00 EST"

one_pm + ddays(1)

[1] "2016-03-13 14:00:00 EDT"

Adding a period takes into account daylight savings.

one_pm

[1] "2016-03-12 13:00:00 EST"

one_pm + days(1)

[1] "2016-03-13 13:00:00 EDT"
You can read more about periods with

help("Period-class")

Intervals are like durations, but they also have an associated start time. You can read more about
intervals with

help("Interval-class")

« Exercise: How long of a time-span is covered in the WMATA ridership dataset?

Time Zones

o Time zones are specified using the tz or tzone arguments (for example, in the call to ymd_hms ()
above).

o Time zones are specified by “content/city.” For example, "America/New_York" and "Europe_Paris"
e You can see a complete list of time zones with 0lsonNames ().
o The default time zone is UTC (which has no daylight savings).

e You usually don’t have to worry about timezones unless you loaded them in incorrectly. For example,
R might think it’s UTC even though it should be America/New_York and then forget daylight savings.

e If a date-time is labelled with the incorrect time zone, use force_tz().

dl <- ymd_hms("20140101 10:01:11")
d1

[1] "2014-01-01 10:01:11 UTC"

force_tz(dl, tzone = "America/New_York")

[1] "2014-01-01 10:01:11 EST"

o If the timezone is correct, but you want to change it, use with_tz(Q).

with_tz(dl, tzone = "America/New_York")

[1] "2014-01-01 05:01:11 EST"

	Learning Objectives
	Parsing Dates
	Parsing Dates
	Dates from individual components
	Extracting Components
	Time Spans
	Time Zones

