
11 Iterators
David Gerard
2019-04-02

Learning Objectives

• Learn about iteration.
• Iterators in base R.
• Iterators in purrr.
• Chapter 21 of RDS.
• Purrr Cheat Sheet.
• Purrr Overview.

For Loops

• Load the tidyverse

library(tidyverse)

• Iteration is the repetition of some amount of code.

• If we didn’t know the sum() function, how would we add up the elements of a vector?

x <- c(8, 1, 3, 1, 3)

• We could manually add the elements.

x[1] + x[2] + x[3] + x[4] + x[5]

[1] 16

But this is prone to error (through copy and paste). Also, what if x has 10,000 elements?

• For loops to the rescue!

sumval <- 0
for (i in seq_along(x)) {

sumval <- sumval + x[[i]]
}
sumval

[1] 16

• Each for loop contains the following elements:

1. Output: This is sumval above. We allocate the space for the output before the for loop.
2. Sequence: This is seq_along(x) above, which evaluates to 1 2 3 4 5. These are the values

that i will go through each iteration.

1

https://r4ds.had.co.nz/
https://github.com/rstudio/cheatsheets/blob/master/purrr.pdf
https://purrr.tidyverse.org/

3. Body: This is the code between the curly braces {}. This is the code that will be evaluated each
iteration with a new value of i.

• In the above sequence, R internally transforms the code to:

sumval <- 0
sumval <- sumval + x[[1]]
sumval <- sumval + x[[2]]
sumval <- sumval + x[[3]]
sumval <- sumval + x[[4]]
sumval <- sumval + x[[5]]
sumval

[1] 16

• You often want to fill a vector with values. You should create this vector beforehand using the vector()
function.

• For example, let’s calculate a vector of cumulative sums of x.

cumvec <- vector(mode = "double", length = length(x))
cumvec

[1] 0 0 0 0 0

for (i in seq_along(cumvec)) {
if (i == 1) {

cumvec[[i]] <- x[[i]]
} else {

cumvec[[i]] <- cumvec[[i - 1]] + x[[i]]
}

}
cumvec

[1] 8 9 12 13 16

Same as cumsum(x)
cumsum(x)

[1] 8 9 12 13 16

• Exercise: The first two numbers of the Fibonacci Sequence are 0 and 1. Each succeeding number is
the sum of the previous two numbers in the sequence. For example, the third element is 1 = 0 + 1,
while the fourth elements is 2 = 1 + 1, and the fifth element is 3 = 2 + 1. Use a for loop to calculate
the first 100 Fibonacci Numbers. Sanity Check: The log2 of the 100th Fibonacci Number is about
67.57.

• Looping is often done over the columns of a data frame.

• Note: for a data frame df, seq_along(df) is the same as 1:ncol(df) which is the same as
1:length(df) (since data frames are special cases of lists).

• Let’s calculate the mean of each column of mtcars

2

https://en.wikipedia.org/wiki/Fibonacci_number

data("mtcars")
mean_vec <- vector(mode = "numeric", length = length(mtcars))
for (i in seq_along(mtcars)) {

mean_vec[[i]] <- mean(mtcars[[i]], na.rm = TRUE)
}
mean_vec

[1] 20.0906 6.1875 230.7219 146.6875 3.5966 3.2172 17.8487
[8] 0.4375 0.4062 3.6875 2.8125

colMeans(mtcars)

mpg cyl disp hp drat wt qsec vs
20.0906 6.1875 230.7219 146.6875 3.5966 3.2172 17.8487 0.4375
am gear carb
0.4062 3.6875 2.8125

• Why not just use colMeans()? Well, there is no “colSDs” function, so iteration is important for
applying non-implemented functions to multiple elements in R.

• Exercise: Use a for loop to calculate the standard deviation of each plant trait in the iris data frame.

purrr

Basic Mappings

• R is a functional programming language. Which means that you can pass functions to functions.

• Suppose on mtcars we want to calculate the column-wise mean, the column-wise median, the column-
wise standard deviation, the column-wise maximum, the column-wise minimum, and the column-wise
MAD. The for-loop would look very similar

funvec <- rep(NA, length = length(mtcars))
for (i in seq_along(funvec)) {

funvec[i] <- fun(mtcars[[i]], na.rm = TRUE)
}
funvec

• Ideally, we would like to just tell R what function to apply to each column of mtcars. This is what
the purrr package allows us to do.

• purrr is a part of the tidyverse, and so does not need to be loaded separately.

• map_*() takes a vector (or list or data frame) as input, applies a provided function on each element of
that vector, and outputs a vector of the same length.

– map() returns a list.
– map_lgl() returns a logical vector.
– map_int() returns an integer vector.
– map_dbl() returns a double vector.
– map_chr() returns a character vector.

3

https://en.wikipedia.org/wiki/Median_absolute_deviation

map_dbl(mtcars, mean)
map_dbl(mtcars, median)
map_dbl(mtcars, sd)
map_dbl(mtcars, mad)
map_dbl(mtcars, min)
map_dbl(mtcars, max)

• You can pass on more arguements in map_*().

map_dbl(mtcars, mean, na.rm = TRUE)

• Suppose you want to get the output of summary() on each column.

map(mtcars, summary)

• Exercise (RDS 21.5.3.1): Write code that uses one of the map functions to:

1. Determine the type of each column in nycflights13::flights.
2. Compute the number of unique values in each column of iris.
3. Generate 10 random normals for each of µ = −10, 0, 10, . . . , 100.

Shortcuts

• You can refer to elements of the vector by “.” in a map() call if the .f argument is preceded by a “~”.
For example, the following are three equivalent ways to calculate the mean of each column in mtcars.

map_dbl(mtcars, mean)
map_dbl(mtcars, function(.) mean(.))
map_dbl(mtcars, ~mean(.))

• What is actually going on is that purrr is creating an “anonymous function”

.f <- function(.) {
mean(.)

}

and then calling this function in map().

map_dbl(mtcars, .f)

• Why is this useful? Consider the following chunk of code which allows us to fit many simple linear
regression models:

mtcars %>%
split(.$cyl) %>%
map(function(df) lm(mpg ~ wt, data = df)) ->
lmlist

– split(.$cyl) will turn the data frame into a list of data frames where each data frame has a
different value of cyl for all units. The “.” references the current data frame.

– function(df) lm(mpg ~ wt, data = df) defines a function (called an “anonymous function”)
that will fit a linear model of mpg on wt where those variables are in the data frame df.

4

– The map() call fits that linear model to each of the three data frames in the list created by
split().

– What is returned is a list of three lm objects that you can use to get fits and summaries.

summary(lmlist[[1]])

##
Call:
lm(formula = mpg ~ wt, data = df)
##
Residuals:
Min 1Q Median 3Q Max
-4.151 -1.980 -0.627 1.930 5.252
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.57 4.35 9.10 7.8e-06
wt -5.65 1.85 -3.05 0.014
##
Residual standard error: 3.33 on 9 degrees of freedom
Multiple R-squared: 0.509, Adjusted R-squared: 0.454
F-statistic: 9.32 on 1 and 9 DF, p-value: 0.0137

• Again, rather than create an “anonymous function”, you can use the formula notation to do the same
thing:

mtcars %>%
split(.$cyl) %>%
map(~lm(mpg ~ wt, data = .)) ->
lmlist

– Here, the “.” in “data = .” references the current data frame from the list of data frames that
we are iterating through.

• We can use map() to get a list of summaries.

lmlist %>%
map(summary) ->
sumlist

• If you want to extract the R2, you can do this using the formula notation as well.

sumlist[[1]]$r.squared ## only gets one R^2 out.

[1] 0.5086

Gets all R^2 out
sumlist %>%

map(~.$r.squared)

5

$`4`
[1] 0.5086
##
$`6`
[1] 0.4645
##
$`8`
[1] 0.423

• Exercise: A t-test is used to test for differences in population means. R implements this with
t.test(). For example, if I want to test for differences between the mean mpg’s of automatics and
manuals (coded in variable am), I would use the follwoing syntax.

t.test(mpg ~ am, data = mtcars)$p.value

Use map() to get the p-value for this test within each group of cyl.

keep() and discard().

• keep() selects all variables that return TRUE according to some function.

• E.g. let’s keep all numeric variables and calculate their means in the iris data frame.

iris %>%
keep(is.numeric) %>%
map_dbl(mean)

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.843 3.057 3.758 1.199

• discard() will select all variables that return FALSE according to some function.

• Let’s count the number of each species.

iris %>%
discard(is.numeric) %>%
map(table)

$Species
##
setosa versicolor virginica
50 50 50

• Other less useful functions are available in Section 21.9 of RDS.

• Exercise: In the mtcars data frame, keep only variables that have a mean greater than 10 and
calculate their mean. Hint: You’ll have to use some of the shortcuts above.

6

https://en.wikipedia.org/wiki/Student%27s_t-test
https://r4ds.had.co.nz/

	Learning Objectives
	For Loops
	purrr
	Basic Mappings
	Shortcuts
	keep() and discard().

