11 Vectors and Lists
David Gerard
2019-03-11

Learning Objectives

e Manipulating Vectors and Lists using base R syntax.
e Chapter 20 of RDS.

Vector Basics

e We'll use just a few tidyverse functions.

library(tidyverse)

e Recall the vector material from the R Basics Worksheet.

e A vector is a sequence of elements of the same type.

e “type” = integer, double, character, logical, factor, or date.

e numeric is used to represent vectors that are either integers or doubles.

o Use c() to create vectors.

e Use typeof () to see the type of vector and is_*() to check the type of vector.

Double:

x <- c(1, 10, 2)
typeof (x)

[1] "double"
is_double(x) ## From purrr package

[1] TRUE

o Integer (use L to tell R that a number is an integer):

x <- c(1L, 10L, 2L)
typeof (x)

[1] "integer"
is_integer(x) ## From purrr package
[1] TRUE

e Character:

x <= c("hello", "good", "sir"
typeof (x)

[1] "character"

https://r4ds.had.co.nz/
https://dcgerard.github.io/stat_412_612/lectures/01_intro/01_worksheet.pdf

is_character(x) ## From purrr package

[1] TRUE

Logical:

x <- c(TRUE, FALSE, FALSE)
typeof (x)

[1] "logical"

is_logical(x) ## From purrr package

[1] TRUE

Factor: Factors are actually integers with extra attributes

x <- factor(c("A", ”B", "B"))
typeof (x)

[1] "integer"

is.factor(x)

[1] TRUE

is_logical(x) ## From purrr package

[1] FALSE

Dates: Dates are actually doubles with extra attributes.

X <- lubridate::ymd(20150115, 20110630, 20130422)
typeof (x)

[1] "double"
lubridate::is.Date(x)

[1] TRUE
is_double(x) ## From purrr package

[1] TRUE

Each element of a vector can have a name
x <- c(horse = 7, man = 1, dog = 8)

X

horse man dog
7 1 8

You can see and change the names with the names () function

names (x)

[1] "horse" "man" "dog"
names (x) [1] <- "cat"

X

cat man dog
7 1 8

e Subset with brackets [
X <- C(”I“ s "like" s ”dOgS”)
x[2:3]
[1] "like" "dogs"
lvec <- c(TRUE, FALSE, TRUE)
x[1vec]
[1] nn "dOgS"

e Substitute while subsetting
x[1] <- "You"
X
[1] "You" "like" "dogs"
x[1lvec] <- "We"
X

[1] n"ye" "ike" "We"

e Subset with negative values to drop elements
x[-3]
[1] "We" "like"

e Subset a named vector with the name
x <- c(horse = 7, man = 1, dog = 8)

X[”man"]

man
#t 1

e Two brackets [[only returns a single elements and drops the name.

x[3]

dog
8

x[[3]1]

[1] 8

o Exercise: Consider the following vector:

x <- c(Yoshi = 10L,

Mario = 31L,
Luigi = 72L,
Peach = 11L,
Toad = 38L)

Extract Yoshi and Peach from the above vector using:

1. Integer subsetting.

2. Negative integer subsetting.
3. Logical subsetting.

4. Name subsetting.

o Exercise: In the vector above, substitute Yoshi’s number with 19L.

e You are used to doing vectorized operations.

x <- c(1, 4, 1, 5)
x + 10

[1] 11 14 11 15

e This is called “recycling”, because what R is internally doing is thinking this is the same as

x + c(10, 10, 10, 10)

[1] 11 14 11 15

e You can recycle non-scalars (but it’s almost never a good idea):

x + c(10, 20)

[1] 11 24 11 25
x + c(10, 20, 10, 20)

[1] 11 24 11 25

Lists

o Lists are vectors whose elements can be of different types.

e Use list () to make a list.

my_first_list <- list(x = "a", y = 1, z = c(1L, 2L, 3L), list("a", 1))
my_first_list

$x

[1] "a"
##

$y

(1] 1

##

##t $z

[1] 1 2 3
##

[[4]1]

[[4]11([1]]
[1] "a"
##

[[411([2]1]
[1] 1

e The above is a named list that contains a character, a numeric, a logical vector, and another list. The
internal list is unnamed.

o Use str() (for structure) to see the internal properties of a list.

str(my_first_list)

List of 4

$ x: chr "a"

$ y: num 1

$ z: int [1:3]1 1 2 3
¢ :List of 2

..$: chr "a"
..$: num 1
Single brackets [return a sublist. You can use the same subsetting strategies as for vectors.

my_first_list[1:2]

$x

[1] "a"
##

$y

[1] 1

my_first_list["y"]

$y
[1] 1

Double brackets [[returns a single list element.

my_first_list[[1]]

[1] Ilall
my_first_list[["z"]]

[11 1 2 3

Use dollar signs $ (just like in data frames) to extract named list elements.

my_first_list$z

[11 1 2 3

You can remove elements of a list by substituting them with NULL.

str(my_first_list)

List of 4

$ x: chr "a"

$ y: num 1

$ z: int [1:3] 1 2 3
$:List of 2

#it ..$: chr "a"

#it ..$: num 1

my_first_list$x <- NULL
str(my_first_list)

List of 3

$ y: num 1

$ z: int [1:3] 1 2 3
¢ :List of 2

..$: chr "a"

#i# ..$: num 1

Exercise: Consider the following list:

wedding <- list(venue = "chick-fil-a",
guest = tribble(~name, ~meal, ~age,
#Hp—————— - /=== /===
"Yoshi", "y 29L,

"Wario", "c", 27L,
"Bowser", "V", 34L,
"Luigi", "c", 36L,
"Toad", "B", 34L),

bride = "Peach",

groom = "Mario",

date = parse_date("11/10/2020", "%d/%m/%Y"))

. Wario can’t actually make it. Remove his row from the data frame.
. Add a new named vector called meal where V is "Vegetarian", C is "Chicken", and B is "Beef".
. Extract the venue and the date from wedding. Use three different techniques do this.

. "chick-fil-a" should be capitalized. Capitalize the first "c".

	Learning Objectives
	Vector Basics
	Lists

